變分題目、數學高手請進

2007-05-25 11:19 pm
2.(a)若 (y^2 – x^2) 隨 [(1/x^2)-(1/y^2)] 而反變,證明 (y^2 – x^2) 正變於x^2y^2。
(b)若 (y^2 + x^2) 隨[(1/x^2)-(1/y^2)] 而反變,證明 (y^4 – x^4) 正變於 x^2y^2。

回答 (2)

2007-06-01 9:40 pm
✔ 最佳答案
2a)
let (y^2 - x^2) = k/((1/x^2) - (1/y^2)),k is constant
y^2 - x^2 = k/((y^2 - x^2) / x^2y^2)
y^2 - x^2 = k(x^2y^2)/(y^2 - x^2)
(y^2 - x^2)^2 = k(x^2y^2)<--------(y^2 - x^2)^2 is directly varies to (x^2y^2)
y^2 - x^2 = q(xy)<---------------(y^2 - x^2 ) is directly varies to xy

2b)
let (y^2 + x^2) = R/{[(1/x^2) - (1/y^2)]},where R is constant
(y^2 + x^2) = R(x^2y^2)/(y^2 - x^2) <---------by part a
y^4 - x^4 = R(x^2y^2)
So,
(y^4 - x^4) is directly varies to x^2y^2
參考: EASON MENSA
2007-05-26 12:03 am
(a) Let (y^2 - x^2) (1/x^2 - 1/y^2)= k
(y^2 - x^2) (y^2 - x^2) / (x^2y^2)= k
(y^2 - x^2)^2 = kx^2y^2
(y^2 - x^2) = (開方k)xy
(y^2 – x^2) 正變於xy (題目打錯)

(b) 同上,差唔多


收錄日期: 2021-04-12 21:27:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070525000051KK01857

檢視 Wayback Machine 備份