✔ 最佳答案
The following are trigonometric identities
sin^x + cos^x = 1
tanx = sinx / cosx
1)
1/sin* - cos^x/sinx
= (1 - cos^x) / sinx
= sin^x / sinx
= sinx
2)
1-cos^x/(sinxcosx)
= sin^x/(sinxcosx)
= sinx / cosx
= tanx
3)
If tanx = 3 and cosx = 1/√10, find the value of sinx.
tanx = sinx / cosx
sinx = tanx(cosx)
= 3(1/√10)
= 3(√10) / 10
4)
tan^xcos^x + cos^x
(since tan^x = sin^x / cos^x)
tan^xcos^x + cos^x
= (sin^x / cos^x)(cos^x) + cos^x
= sin^x + cos^x
= 1
5)
If cosx = 1/4, find the value of 5 sin^x - 3 cos^x.
(since sin^x = 1 - cos^x & cos^x = (1/4)^2 = 1/16)
5 sin^x - 3 cos^x
= 5(1 - cos^x) - 3 cos^x
= 5 - 8 cos^x
= 5 - 8 (1/16)
= 4.5 //