F.2 maths(Trigonometric relations)

2007-05-22 11:06 pm
Simplify the following expressions. (√:root) ( ^ : square)
1. 1/sin* - cos^ */sin*

2. 1-cos^ */sin*cos*

3. If tan* = 3 and cos* = 1/√10, find the value of sin*.

4. tan^ *cos^ * + cos^ *

5. If cos* = 1/4, find the value of 5 sin^ * - 3 cos^ *.

回答 (2)

2007-05-22 11:45 pm
✔ 最佳答案
The following are trigonometric identities
sin^x + cos^x = 1
tanx = sinx / cosx

1)
1/sin* - cos^x/sinx
= (1 - cos^x) / sinx
= sin^x / sinx
= sinx

2)
1-cos^x/(sinxcosx)
= sin^x/(sinxcosx)
= sinx / cosx
= tanx

3)
If tanx = 3 and cosx = 1/√10, find the value of sinx.
tanx = sinx / cosx

sinx = tanx(cosx)
= 3(1/√10)
= 3(√10) / 10

4)
tan^xcos^x + cos^x
(since tan^x = sin^x / cos^x)

tan^xcos^x + cos^x
= (sin^x / cos^x)(cos^x) + cos^x
= sin^x + cos^x
= 1

5)
If cosx = 1/4, find the value of 5 sin^x - 3 cos^x.
(since sin^x = 1 - cos^x & cos^x = (1/4)^2 = 1/16)

5 sin^x - 3 cos^x
= 5(1 - cos^x) - 3 cos^x
= 5 - 8 cos^x
= 5 - 8 (1/16)
= 4.5 //
2007-05-25 1:15 pm
我將 * 變做 x 會清楚d....
1)1/sinx - cos^x/sinx
=(1-cos^x)/sinx
=sin^x/sinx
=sinx

2)1-cos^x/sinxcosx
=sin^x/sinxcosx
=sinx/cosx
=tanx

3)tanx=3
sinx/cosx=3
sinx/(1/√10)=3
sinx=3/√10

4)tan^xcos^x+cos^x
=sin^x/cos^x X cos^x+cos^x
=sin^x+cos^x
=1

5)sin^x+cos^x=1
sin^x=1-(1/4)^
=15/16

5 sin^x - 3 cos^x
=5(15/16)-3(1/16)
=72/16
=9/2


收錄日期: 2021-05-01 00:13:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070522000051KK01847

檢視 Wayback Machine 備份