F.4 a math 問題(2)

2007-05-22 2:30 am
if the equations x^2 + ax + b =0 and x^2 +px+q =0 have a common root,

prove that (a - p)(bp - aq)=(b - q)^2

回答 (2)

✔ 最佳答案
Let c be the common root,
c^2 + ac + b = 0 --------------- Equation1
c^2 + pc + q = 0 --------------- Equation2
Equation1 - Equation2 = (a-p)c= (q-b)
c = (q-b)/(a-p) ------------------ Equation3
Sub Equation3 into Equation1,
(q-b)^2/(a-p)^2 + a(q-b)/(a-p) + b = 0
(q-b)^2 + a(q-b)(a-p) + b(a-p)^2 = 0
(a-p)(aq-ab+ba-bp) + (b-q)^2 = 0
(a-p)(bp-aq) = (b-q)^2
參考: me
2007-05-22 3:01 am
Let z be the common root of two equations ........

therefore,we have:
z^2+az+b=0...................1
z^2+pz+q=0...................2

1-2:
(a-p)z+(b-q)=0
z=(q-b)/(a-p).....................3

put 3 into 1
(q-b)^2/(a-p)^2+a(q-b)/(a-p)+b=0
(q-b)^2+a(q-b)(a-p)+b(a-p)^2=0
(a-p)(aq-ab+ab-bp)=-(q-b)^2
(a-p)(bp-aq)=-[-(q-b)^2]
(a-p)(bp-aq)=(b-q)^2 [(b - q)^2=[-(q-b)]^2=(q-b)^2)


收錄日期: 2021-04-25 17:18:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070521000051KK03039

檢視 Wayback Machine 備份