Pure maths

2007-05-21 2:20 am
arctan(y/3) - arctan(π/3)=ln(x)

y(x)=?

回答 (2)

2007-05-23 6:39 pm
✔ 最佳答案
tan^(– 1) (y/3) – tan^(– 1) (π/3) = ln x
y(x) = ?


Method 1:

tan^(– 1) (y/3) – tan^(– 1) (π/3) = ln x
tan^(– 1) (y/3) = tan^(– 1) (π/3) + ln x
tan tan^(– 1) (y/3) = tan [tan^(– 1) (π/3) + ln x]
y/3 = [tan tan^(– 1) (π/3) + tan ln x]/[1 – [tan tan^(– 1) (π/3)]tan ln x]
y/3 = (π/3 + tan ln x)/[1 – (π/3) tan ln x]
y/3 = (π + 3 tan ln x)/(3 – π tan ln x)
y = (3π + 9 tan ln x)/(3 – π tan ln x)
y(x) = (3π + 9 tan ln x)/(3 – π tan ln x)


Method 2:

tan^(– 1) (y/3) – tan^(– 1) (π/3) = ln x
tan [tan^(– 1) (y/3) – tan^(– 1) (π/3)] = tan ln x
[tan tan^(– 1) (y/3) – tan tan^(– 1) (π/3)]/[1 + [tan tan^(– 1) (y/3)] [tan tan^(– 1) (π/3)]] = tan ln x
(y/3 – π/3)/[1 + (y/3)(π/3)] = tan ln x
(3y – 3π)/(πy + 9) = tan ln x
3y – 3π = πy tan ln x + 9 tan ln x
3y – πy tan ln x = 3π + 9 tan ln x
y(3 – π tan ln x) = 3π + 9 tan ln x
y = (3π + 9 tan ln x)/(3 – π tan ln x)
y(x) = (3π + 9 tan ln x)/(3 – π tan ln x)
參考: My Additional Mathematics knowledge
2007-05-24 1:11 am
................................


收錄日期: 2021-04-10 23:41:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070520000051KK04184

檢視 Wayback Machine 備份