統計學---Laspeyre Price index & Paasche Price index

2007-05-20 6:17 am
題目given, 1992, 1993, 1994, 而1993係base year, 要求計算Laspeyre Price index in 1992-1994 & Paasche Price index in 1992-1994..

請問, 如果係要計應該係點計, 淨係計1993同1994定係1992同1993寫左題式先, 之後再計1993同1994

麻煩詳細一點....怕會唔明...
更新1:

應該是Laspeyres Price index

更新2:

我個point響如果係3年, 但係中間果年係base year, 禁之前果年要唔要計

回答 (1)

2007-05-21 4:36 am
✔ 最佳答案
唔係好明你意思
題目應該是這樣
以1993係base year﹐所以1993年的Laspeyre Price index 和Paasche Price index 是100
現在想分別求1992和1994年的Laspeyre Price index 和Paasche Price index,1993年應該不用求的﹐因為已經set為100。
如何求Laspeyre Price index 和Paasche Price index ?可參考以下說明
Assume we are given the table below
If the Laspeyre Price index and Paasche Price index in 1990 is 100
What is the Laspeyre Price index and Paasche Price index in 2000?








The 1990 party


The 2000 party



Drink


Unit price


Quantity


Unit price


Quantity






po


qo


pn


qn



wine


£2.50


25


£3


30



beer


£4.50


10


£6.00


8



soft drinks


£0.60


10


£0.84


15


The Laspeyre's price index .
The Laspeyre's price index is given by ( Σ pnqo/ Σpoqo) x 100.
In the above table we have
Σ pnqo = (3 x 25) + (6 x 10) + (0.84 x 10) = 143.4 and
Σ poqo = (2.5 x 25) + (4.5 x 10) + (0.6 x 10) = 113.5
so Laspeyre's price index = (143.4/113.5) x 100 = 126.3 to 1 d.p.
The Paasche's price index
This uses the end year quantities as weights.
The Paasche's price index is given by ( Σpnqn/ Σpoqn) x 100.
In this particular case we have
Σpnqn = (3 x 30) + (6 x 8) + (0.84 x 15) = 150.6 and
Σpoqn = (2.5 x 30) + (4.5 x 8) + (0.6 x 15) = 120
so Paasche's price index = (150.6/120) x 100 = 125.5.



收錄日期: 2021-04-25 16:54:31
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070519000051KK05084

檢視 Wayback Machine 備份