CIrcle

2007-05-20 3:09 am
A circle have its centre at (h,k) touches the line 4x+3y-14 at (2,2)
show that the equation of circle is x^2+y^2+(3k/2 -7)x-2ky+(k+6)=0

係3k/2 再 -7

回答 (2)

2007-05-21 8:15 am
✔ 最佳答案
The line is "4x + 3y - 14 = 0" ?
sub (h,k) into 4x + 3y - 14 = 0
4h + 3k - 14 = 0
h = (14-3k)÷4

radius^2
=(h-2)^2 + (k-2)^2
=h^2 - 4h + 4 + k^2 - 4k + 4
=h^2 - 4h + k^2 - 4k + 8

∴Equation of circle:
x^2 + y^2 - 2hx - 2ky + [ h^2 +k^2 - (h^2 - 4h + k^2 - 4k + 8)] = 0
x^2 + y^2 - 2hx - 2ky + (4h + 4k - 8) = 0
∴x^2 + y^2 - 2(14-3k)x÷4 - 2ky + (4(14-3k)÷4 + 4k - 8) = 0
x^2 + y^2 + (3k/2 -7)x - 2ky + [(14-3k) + 4k - 8] = 0
x^2 + y^2 + (3k/2 -7)x - 2ky + (k+6) = 0
2007-06-02 5:15 pm
If the circle touches the line 4x + 3y - 14 = 0, the centre (h, k) should never be on this line.

The answer is totally wrong.


收錄日期: 2021-04-30 22:18:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070519000051KK03953

檢視 Wayback Machine 備份