Pure maths

2007-05-17 9:24 am
Please use integrating factor method to find particular solution

x(dy/dx) - 4y = x^6 e^x (x>0)

the initial condition y(1) = 1

回答 (1)

2007-05-18 10:03 am
✔ 最佳答案
上面果位人兄,呢題原本應該識做嘅,點知唔小心做錯咗!
(以下我特登用全形字打嘅部分是上面果位人兄錯咗而由本人改正過來的。)

x(dy/dx) – 4y = x^6 e^x (x > 0)
dy/dx – (4/x)y = x^5 e^x

I.F. = e^[∫– (4/x) dx]
= e^(– 4 ln x)
= e^[ln x^(– 4)]
= x^(– 4)

The equation becomes:
(d/dx)[yx^(– 4)] = x^5 e^x x^(– 4)
yx^(– 4) = ∫xe^x dx
yx^(– 4) = ∫x d(e^x)
yx^(– 4) = xe^x – ∫e^x dx
yx^(– 4) = xe^x – e^x + C_1
y = x^5 e^x – x^4 e^x + (C_1)x^4

when x = 1, y = 1,
1 = 1e¹ – 1e¹ + (C_1)1
C_1= 1

∴y = x^5 e^x – x^4 e^x +x^4
參考: My Applied Mathematics knowledge


收錄日期: 2021-04-11 17:23:59
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070517000051KK00287

檢視 Wayback Machine 備份