a maths請寫step..**急

2007-05-17 3:01 am
(a) Prove that if tanAtan(A+B) = k , then (k+1)cos(2A + B) = (1-k)cosB

(b) Find the general solution of tanAtan(A + 60° ) = 2

回答 (2)

2007-05-17 4:32 am
✔ 最佳答案
(a)
tanAtan(A+B) = k
(sinA/cosA)[sin(A+B)/cos(A+B)]=k
sinAsin(A+B)=kcosAcos(A+B)
-1/2[cos(2A+B)-cos(-B)]=k/2[cos(2A+B)+cos(-B)]
-[cos(2A+B)-cosB]=k[cos(2A+B)+cosB]
-cos(2A+B)+cosB=kcos(2A+B)+kcosB
(k+1)cos(2A + B) = (1-k)cosB...(*)
(b)
sub B=60,k=2 in (*)
(2+1)cos(2A + 60) = (1-2)cos60
3cos(2A + 60) = -1/2
cos(2A + 60) = -1/6
2A + 60=360n+99.594 or 360n-99.594
2A=360n+39.594 or 360n-159.594
A= 180n+19.797 or 180n-79.797




2007-05-18 3:08 am
a maths請寫step..**急
(a) Prove that if tanAtan(A+B) = k , then (k+1)cos(2A + B) = (1-k)cosB

(b) Find the general solution of tanAtan(A + 60° ) = 2

***********************************************************************************


(a)

tanAtan(A+B) = k

(sinA/cosA)[sin(A+B)/cos(A+B)]=k

sinAsin(A+B)=kcosAcos(A+B)

-1/2[cos(2A+B)-cos(-B)]=k/2[cos(2A+B)+cos(-B)]

-[cos(2A+B)-cosB]=k[cos(2A+B)+cosB]

-cos(2A+B)+cosB=kcos(2A+B)+kcosB

(k+1)cos(2A + B) = (1-k)cosB...(*)

(b)

sub B=60,k=2 in (*)

(2+1)cos(2A + 60) = (1-2)cos60

3cos(2A + 60) = -1/2

cos(2A + 60) = -1/6

2A + 60=360n+99.594 or 360n-99.594

2A=360n+39.594 or 360n-159.594

A= 180n+19.797 or 180n-79.797
參考: Myself !


收錄日期: 2021-04-25 16:53:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070516000051KK03308

檢視 Wayback Machine 備份