Applications of Differentiation

2007-05-15 9:08 am
If the curve , where k<>0(not equal to 0), has no stationary points, find the range of values of k.

回答 (1)

2007-05-15 10:47 am
✔ 最佳答案
y=f(x)=kx^3+3x^2+(k-2)x+1
if no stationary points, then f'(x) should not be equal to 0
f'(x)=3kx^2+6x+(k-2)
Since f'(x) <> 0
The discriminant should be less than 0
So
6^2-4(3k)(k-2)<0
36-12k(k-2)<0
3-k(k-2)<0
3-k^2+2k<0
k^2-2k-3>0
(k-3)(k+1)>0
k<-1 or k>3
The range of values of k is k<-1 or k>3


收錄日期: 2021-04-25 16:52:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070515000051KK00242

檢視 Wayback Machine 備份