✔ 最佳答案
acid rain
The term acid rain also known as acid precipitation is commonly used to mean the deposition of acidic components in rain, snow, dew, or dry particles. The more accurate term is "acid precipitation." [1] Acid rain occurs when sulfur dioxide and nitrogen oxides are emitted into the atmosphere, undergo chemical transformations and are absorbed by water droplets in clouds. The droplets then fall to earth as rain, snow, mist, dry dust, hail, or sleet. This increases the acidity of the soil, and affects the chemical balance of lakes and streams.[2]
The term "acid rain" is sometimes used more generally to include all forms of acid deposition — both wet deposition, where acidic gases and particles are removed by rain or other precipitation, and dry deposition removal of gases and particles to the Earth's surface in the absence of precipitation.[3]
Acid rain is defined as any type of precipitation with a pH that is unusually low.[4] Dissolved carbon dioxide dissociates to form weak carbonic acid giving a pH of approximately 5.6 at typical atmospheric concentrations of CO2.[5] Therefore a pH of less than 5.6 has sometimes been used as a definition of acid rain.[6] However, natural sources of acidity mean that in remote areas, rain has a pH which is between 4.5 and 5.6 with an average value of 5.0 and so rain with a pH of less than 5 is a more appropriate definition.[7] The US EPA says, "Acid rain is a serious environmental problem that affects large parts of the US and Canada" [8] Acid rain accelerates weathering in carbonate rocks and accelerates building weathering. It also contributes to acidification of rivers, streams, and forest damage at high elevations. When the acid builds up in rivers and streams it can kill fish.
Global warming is the increase in the average temperature of the Earth's near-surface air and oceans in recent decades and its projected continuation.
The ozone layer, or ozonosphere layer (rarely used term), is the part of the [[Earth's concentrations of ozone (O3). "Relatively high" means a few parts per million—much higher than the concentrations in the lower atmosphere but still small compared to the main components of the atmosphere. It is mainly located in the lower portion of the stratosphere from approximately 15 km to 35 km above Earth's surface, though the thickness varies seasonally and geographically.[1] The ozone layer was discovered in 1913 by the French physicists Charles Fabry and Henri Buisson. Its properties were explored in detail by the British meteorologist G. M. B. Dobson, who developed a simple spectrophotometer that could be used to measure stratospheric ozone from the ground. Between 1928 and 1958 Dobson established a worldwide network of ozone monitoring stations which continues to operate today. The "Dobson unit", a convenient measure of the total amount of ozone in a column overhead, is named in his honor.