Applications of Differentiation

2007-05-11 5:49 am
It is given that the curve y=x^2-2x+4. Find the points on the curve at which the tangent to the curve passes through the origin.

回答 (2)

2007-05-11 6:10 am
✔ 最佳答案
kaihong411 錯鬼左

有兩點(2,4) 同(-2,12)

2007-05-11 13:23:33 補充:
設果點為(m,n)dy/dx = 2x - 2tangent (y - n) / (x - m) = 2m - 2經(0,0) 即 n/m = 2m - 2n = 2m^2 - 2m --------------- (1)(m,n) 在曲線上面, 即 n = m^2 - 2m + 4 ----------------- (2)由(1)同(2)得 2m^2 - 2m = m^2 - 2m + 4m^2 = 4m = 2 或 m = -2m = 2 時, n = 4m = -2 時, n = 12
2007-05-11 9:11 pm
y = x^2 - 2x + 4

dy/dx = 2x - 2

let the point(s) be (a,b) on the curve

b = a^2 - 2a + 4

dy/dx|(x = a) = 2a - 2

(b - 0) / (a - 0) = 2a - 2

b = 2a^2 - 2a

2a^2 - 2a = a^2 - 2a + 4

a^2 - 4 = 0

(a + 2)(a - 2) = 0

a = -2 or a = 2


收錄日期: 2021-04-12 21:27:06
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070510000051KK04728

檢視 Wayback Machine 備份