畢氏定理的問題

2007-05-11 5:21 am
畢氏定理有很多不同的名字,它們背後都有特別的原因,你能否選出兩個你們認為是特別的,解釋它們的由來?

回答 (3)

2007-05-21 6:03 am
有d太長~^.^"
2007-05-15 2:38 am
西方國家普遍相信「畢氏定理」是由古希臘數學家畢達哥拉斯 (Pythagoras, 公元前 572 至公元前 492 年)發現的,或者是至少是由他證明的。其實早在公元前 1100年左右,中國數學家商高已發現「勾三、股四、弦五」的關係,並用它作計算及測量,所以此定理又稱「勾股定理」或「商高定理」。勾指直角三角形中短的直角邊,股為長的直角邊,弦為斜邊。
公元一世紀,中國最古老的數學及天文著作《周髀》記載了周朝的大夫商高與周公的大段對話,指出夏禹治水時知曉利用 3 : 4 : 5 來構成三角形,時間上比不晚於埃及的最早記錄。《周髀》中更明確寫出計算直角三角形弦長的方法:「勾股各自乘,并而開方除之」。由此可知中國人在那時已掌握勾股定理(畢氏定理又名勾股定理)。
另外,數學史家 M. B. 康托爾(Moritz Benedikt Cantor,1829 - 1920)已推測古埃及人已懂得運用邊長為 3 : 4 : 5 的直角三角形作直角的概念,以達致測量、建築學上的用途。

一塊編號為「普林頓 322」的巴比倫泥板,它印有一組組完整的三列數字,像 (3, 4, 5) 等。起初學者以為這是古時的賬目表。後來經過伊格鮑爾 (Otto Neugebauer)及薩克斯(A. Sachs)的研究,謎團才在 1945 年解開。原來這一串數字是勾股數(一組能作為直角三角形的邊長的正整數稱為「勾股數」)。「普林頓 322」涉及的勾股數十分巨大,若巴比倫人不熟識勾股定及勾股數的參數表,根本無法靠巧合而湊出這些數字來。巴比倫人在公元前二千年已有這極出色的成就,實在令人驚嘆!
2007-05-11 5:34 am
1.畢氏定理-由畢達哥拉斯發現,以其名改名.
2.勾股定理-中國發現,據說比畢達哥拉斯早100多年發現

畢氏定理;直角三角形斜邊平方等如另外2邊平方的和


收錄日期: 2021-04-25 21:13:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070510000051KK04481

檢視 Wayback Machine 備份