a.maths(sin,cos)

2007-04-27 3:38 am
証明以下恆等式:
1. sin3xsin³x + cos3xcos³x = cos³2x
2. cosA - cos2A = 6sin²A/2 - 8sin­­^4 A/2
3. (cosB - cosA) / (cosB+cosA) = tan[(A+B)/2] tan[(A-B)/2]

急,交功課,解釋好d,我唔想睇唔明,唔該

回答 (1)

2007-04-27 4:36 am
✔ 最佳答案
1. 左方程
= sin3xsin³x + cos3xcos³x
= (3sinx - 4sin³x)sin³x + (4cos³x - 3cosx)cos³x
= 3sin4x - 4sin6x + 4cos6x - 3cos4x
右方程
= cos³2x
= (cos²x - sin²x)³
= cos6x - 3cos4xsin²x + 3cos²xsin4x - sin6x
= cos6x - 3cos4x(1-cos²x) + 3(1-sin²x)sin4x - sin6x
= cos6x - 3cos4x+ 3cos6x + 3sin4x - 3sin6x- sin6x
= 3sin4x - 4sin6x + 4cos6x - 3cos4x
= 左方程

所以, sin3xsin³x + cos3xcos³x = cos³2x
P.S. 用以下方程式:
sin3θ = 3sinθ - 4sin³θ
cos3θ = 4cos³θ - 3cosθ
cos2θ = cos²θ - sin²θ
cos²θ = 1 - sin²θ

2. 左方程
= cosA - cos2A
= cosA - (cos²A - sin²A)
= cosA -[cos²A -(1-cos²A)]
= -2cos²A + cosA -1

右方程
= 6sin²A/2 - 8sin­­4A/2
= 6{√[(1 - cosA)/2]}² - 8{√[(1 - cosA)/2]}4
= 3(1 - cosA) - 8 [(1 - cosA)/2]²
= (3 - 3cosA) - 2(1-cosA)²
= 3 - 3 cosA - 2 + 4cosA - 2cos²A
= -2cos²A + cosA -1
= 左方程

所以, cosA - cos2A = 6sin²A/2 - 8sin­­4A/2
P.S. 用以下方程式:
cos2θ = cos²θ - sin²θ = 2cos²θ - 1
sin(θ/2) = ±√[(1 - cosθ)/2]

3. 左方程
= (cosB - cosA) / (cosB+cosA)
= - (cosA - cosB) / (cosA + cosB)
= - {- 2sin[(A+B)/2]sin[(A - B)/2]} / 2cos[(A+B)/2]cos[(A - B)/2]
= tan[(A+B)/2] tan[(A-B)/2]
= 右方程

所以, (cosB - cosA) / (cosB+cosA) = tan[(A+B)/2] tan[(A-B)/2]
P.S. 用以下方程式:
cosθ+ cosψ = 2cos[(θ+ ψ)/2]cos[(θ- ψ)/2]
cosθ- cosψ = - 2sin[(θ+ ψ)/2]sin[(θ- ψ)/2]


收錄日期: 2021-04-12 21:20:23
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070426000051KK03764

檢視 Wayback Machine 備份