1.設方程式2kx2次方-(3k+2)x+k+1=0中適合下列各條件,求k值

2007-04-23 8:10 am
1.設方程式2kx2次方-(3k+2)x+k+1=0中適合下列各條件,求k值.
a.二根之和為2 b.二根同值異號
c. 二根互為倒數 d.一根為零


2. 設x2次方-(m-2)x-(m+3)=0中二根之平方和為25,求m

回答 (1)

2007-04-23 9:02 am
✔ 最佳答案
1)2kx^2 - (3k+2)x + (k+1) = 0
 設 α , β 為方程式的根
 則 α+β = - [ -(3k+2) ] / 2k = (3k+2) / 2k
   αβ = (k+1) / 2k

a)二根之和為2
   α+β = 2
(3k+2) / 2k = 2
  3k+2 = 4k
    2 = 4k - 3k
    k = 2 //

b)二根同值異號
   α+β = 0 (因為 α = -β)
(3k+2) / 2k = 0
  3k+2 = 0
   3k = -2
    k = -2/3 //

c)二根互為倒數
   αβ = 1 (因為 α = 1/β)
(k+1) / 2k = 1
   k+1 = 2k
   1 = 2k - k
    k = 1

d)一根為零
 代 x=0 入方程式,得 k+1 = 0
           k = -1 //

2) x^2 - (m-2)x - (m+3) = 0
 設 α , β 為方程式的根
 則 α+β = - [ -(m-2) ] / 1 = m-2
   αβ = -(m+3) / 1 = -(m+3)

 二根之平方和為25
 則         α^2 + β^2 = 25
        (α+β)^2 - 2αβ = 25
     (m-2)^2 - 2[-(m+3)] = 25
  m^2 - 4m + 4 +2m + 6 - 25 = 0
        m^2 - 2m - 10 = 0
        (m+3)(m-5) = 0
        m = -3 或 m = 5
參考: by My Maths


收錄日期: 2021-04-13 00:42:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070423000051KK00062

檢視 Wayback Machine 備份