✔ 最佳答案
本人已回答過這條問題
請看
http://hk.knowledge.yahoo.com/question/?qid=7006093001539
when n=1, L.H.S=5^(2-1)-3^(2-1)-2^(2-1)=5^1-3^1-2^1=0
n=2,L.H.S=5^(4-1)-3^(4-1)-2^(4-1)=5^3-3^3-2^3=90, which is divisible by 15.
Assume n=k+1
5^(2k-1)-3^(2k-1)-2^(2k-1)=15N,where N is an integer.
when n=k+1
=[5^[2(k+1)-1)] - [3^[2(k+1)-1)] - [2^[2(k+1)-1)]
=[5^(2k+2-1)] - [3^(2k+2-1)] - [2^(2k+2-1) ]
=[5^(2k-1)(5^2)] - [3^(2k-1)(3^2)] - [2^(2k-1)(2^2)]
=[5^(2k-1)(25)] - [3^(2k-1)(9)] - [2^(2k-1)(4)]
=[5^(2k-1)(21+4)] - [3^(2k-1)(5+4)] - [2^(2k-1)(4)]
=[(21)(5^(2k-1))+(4)(5^(2k-1))] - [(5)(3^(2k-1))+(4)(3^(2k-1))] - [2^(2k-1)(4)]
remove bracket:
=(21)(5^(2k-1))+(4)(5^(2k-1)) - (5)(3^(2k-1)) - (4)(3^(2k-1)) - 2^(2k-1)(4)
arrange the common term in one side:
=(4)(5^(2k-1)) - (4)(3^(2k-1)) - (2^(2k-1))(4) + (21)(5^(2k-1)) - (5)(3^(2k-1))
take out the common term:
=4[5^(2k-1) - 3^(2k-1) - 2^(2k-1)] + (21)(5^(2k-1)) - (5)(3^(2k-1))
=4(15N) + (21)(5^(2k-1)) - (5)(3^(2k-1))
=4(15N) +(7)(3)(5)(5^(2k-2) - (3)(5)(3^(2k-2)
=4(15N) + (15)(7) (5^(2k-2) - (15)(3^(2k-2)
take out the common term:
=15[4N + (7) (5^(2k-2) - (3^(2k-2)]
By the principal of mathematical induction , P(n) is true for all positive integers n.