✔ 最佳答案
其實題目是a maths locus, 只需要用中五學生水平所做到的便可, 只是solve 2個unknown根本沒有需要用Cramer’s Rule. 毫無疑問, Andrew兄在數學上的程度較很多人高, 我亦同意真正好的答案,是教方法,不是答問題, 但是我個人認為因應發問者的程度來作答才是最合適, 正如沒有人會對一個請教簡單算術題的小學生長篇大論地講Number Theory.
以下是中五程度的方法, 其實分別不大, 只是應用一些較為平易近人的語言罷了.
Using point slope form, assuming equation of the variable line as:
(y – 0) = m(x – 5), y = mx – 5m … (i)
(可能你會覺得這樣不夠precise, 因為這條equation涵概不到vertical line x = 5)
3x – 4y = 0 … (ii)
3x + 4y = 0 … (iii)
Solving (i) and (ii) for H,
Sub (i) into (ii),
3x – 4(mx – 5m) = 0
(3 – 4m)x + 20m = 0
x = 20m/(4m – 3)
y = m[20m/(4m – 3)] – 5m = 5m[4m – 4m + 3]/(4m - 3) = 15m/(4m – 3)
Therefore H is [20m/(4m – 3), 15m/(4m – 3)]
Similarly, Solving (i) and (iii) for K,
Sub (i) into (iii),
3x + 4(mx – 5m) = 0
(3 + 4m)x – 20m = 0
x = 20m/(4m + 3)
y = m[20m/(4m + 3)] – 5m = 5m[4m – 4m – 3]/(4m + 3) = -15m/(4m + 3)
Therefore K is [20m/(4m + 3), -15m/(4m + 3)]
By Mid-point Theorem, the locus of the mid-point of HK is:
x = [20m/(4m – 3) + 20m/(4m + 3)] / 2 = 20m [4m + 3 + 4m – 3] / 2(4m + 3) (4m – 3) x = 80m²/(4m + 3) (4m – 3) … (iv)
y = [15m/(4m – 3) - 15m/(4m + 3)] / 2 = 15m [4m + 3 – 4m + 3] / 2(4m + 3) (4m – 3) y = 45m/(4m + 3) (4m – 3) … (v)
但通常中五a maths這類題目都不接受parametric form做答案, 所以須去掉parameter m:
(iv) / (v), x / y = 80m / 45 = 16 m/ 9,
m = 9x / 16y … (vi)
Sub (vi) into (v),
y = 45(9x / 16y)/[4(9x / 16y) + 3] [4(9x / 16y) – 3]
y[4(9x / 16y) + 3] [4(9x / 16y) – 3] = 45(9x / 16y)
(9)16y² [3x / 4y + 1] [3x / 4y – 1] = 45(9x)
[3x + 4y] [3x – 4y] = 45x
9x² - 16y² - 45x = 0
The locus required is: 9x² - 16y² - 45x = 0