黑洞係點樣架??

2007-04-19 10:07 pm
我地知的黑洞是一個圓形的黑色洞,我想知黑洞係咪真係得個黑色圓形,定係好似地球咁係一個球體.重有,黑洞佢識唔識郁架,定佢一'出世'就一世都係原地不動??

回答 (5)

2007-04-20 12:06 am
✔ 最佳答案
黑洞的起源:

「黑洞」的觀念並不特別新奇,早在1798年,有名的數學家拉步拉斯已察覺出因為無法射出光線於宇宙而被看成「黑洞」的星球之可能性。該想法在牛頓的重力理論的範圍內,極為簡單。此及縱然某種物體由行星、恆星、月球等彈出或射出。已知除非該物體具有比「逃離速度」更快的速度,它就不可能擺脫重力的引力脫離到宇宙空間。假如物體的速度比逃離速度慢,它不是掉回原位,就是像人造衛星那樣維繫其軌道運動。但拉步拉斯的構想被埋沒許久,因為一般認為不可能存在與太陽同一密度、半徑與地球的軌道半徑相同的星球,就算有也會因黑洞效果而不能觀測。可是到了1917年,黑洞終於以異於前述的方式被再提出討論。那是因為愛因斯坦的一般相對論出現而劃時代地改變重力的概念,使人們欲研究由此理論可預料的現象趨勢成熟。另外一提,關於“黑洞”這個名稱的由來,雖然天文學家Karl Schwarzschild在1916年就發現了廣義相對論中非旋轉黑洞的解,但是一直到1967年它才由諾貝爾物理學獎得主John Wheeler正式定名為“黑洞”(black hole)。

黑洞內部的溫度及狀況:

此情況天文學家還沒有完全的定義。如果我們進入黑洞之中,首先會先通過事件地平面,進入一個完全是空的時空系統,只有恆星陷縮的奇異點(singular point)。雖然是空的時空系統,但其中可能存在著重力輻射,卻沒有任何可以“測出溫度”的介質。雖然在數學上可以預測出許多黑洞中奇特的狀況,如時空旅行等,但是卻很少人提及是否黑洞真的會以恆星陷縮的形式產生。根據超級電腦的計算,陷縮的過程可說是非常混亂。自轉黑洞曾被認為是通往其他宇宙的大門,或者是進入時光隧道的入口,但是經過研究恆星所形成的黑洞物理性質後發現,這些黑洞的內部充滿了巨大的重力輻射通量,粉粹了黑洞之旅的幾何可能性。如果黑洞在宇宙誕生後即形成,那麼其內部除了奇異點外一定空無所有,但是如果黑洞是由後來的超新星爆炸過程所產生的,那麼在我們在進入事件地平面後所看到的黑洞內部會稍有不同,因為時間尺度在我們的座標系統與陷縮星表面的座標系統之間有極大的差異。從外部看,會發覺恆星的核心越來越接近其事件地平面,而且速度越來越慢,直到最後它似乎停止收縮並完全變暗,核心收縮的速度慢到似乎數十億年才收縮幾公分。此時,如果我們在火箭中衝向黑洞,我們會發現整個星球的表面完全在事件地平面之內,被奇異點吞沒。

黑洞內部能量:

由於黑洞的特性就是吞噬了一切東西(包括光),因此,黑洞裡面可能蘊藏著大量能量,甚至人們也感興趣,有沒有從黑洞中提取能量的可能方式呢?為此,必須進一步對自轉黑洞進行分析,且討論一項黑洞的基本物理性質──角動量。我們都知道,各種天體都在旋轉,黑洞應該也不例外,旋轉會使天體有角動量。由於封閉系統的總角動量守恆,當恆星塌縮時,自轉應加遽,一顆新的中子星每秒可旋轉一千多次,進一步塌縮成黑洞,旋轉速度應更快,這是不可避免的,因此,在討論黑洞時應考慮到它的自轉與角動量。自轉黑洞仍然存在著逃離速度為光速的「史瓦西半徑」,但它外面一定範圍的空間也將隨著黑洞一起像剛體那樣旋轉,這個與黑洞一起旋轉的空間稱為黑洞的「工作層」,工作層熱外邊緣稱為「靜止極限」。進入工作層的物體,將隨黑洞一起高速旋轉,獲得很大的能量和角動量,但由於還在史瓦西半徑之外,所以只是黑洞的半捕獲物,既有可能進一步進入史瓦西半徑內被捕獲,也有可能在特殊的條件下越出工作層,先進入然後又越出工作層的物體,由於進入後隨黑洞一起轉動附加了能量,因而越出時將帶走附加的能量。換言之,黑洞的一部份能量和角動量轉移到了物體上,並被它帶走,這就是從黑洞提起能量的一種可能方式。當然,從自轉黑洞提取能量的過程並不是無限制的,就像宏關過程都要遵循熱力學中的熵增加原理一樣,從自轉黑洞提取能量必須保持黑洞的表面積不變而減少其質量。理論計算表明,我們可以把一個自轉黑洞總能量的百分之30擠出來,辦法是小心地把物體送入工作層,帶它們越出後再收集起來,如果能實現的話,黑洞就會失去它的自轉能量只剩下質量,從而靜止極限與史瓦西半徑重合,這時黑洞就「死」了,再也不能直接產生能量了。有趣的是,經過計算,從一個質量為108M⊙的黑洞中可以提取的最大能量為6*1055焦耳,這似乎正是活躍星系或似星所需要的能量。另外一方面也重要的,一般認為黑洞就是吞噬,不可能發出任何東西。但是1974年霍金(Hawking)的最新研究報告,情況可能不完全如此。霍金指出,物質─反物質對(意即正、反粒子對)經過黑洞附近時,可能一個掉入黑洞,而同時將另一個排出黑洞,這意味著黑洞能夠產生和發射一些粒子,以微觀的奇特方式穩定地往外“蒸發”粒子,有了這種“蒸發”,黑洞就不再絕對是“黑”的了,黑洞也將會在長時間內逐漸被蒸發掉。霍金還證明,每個黑洞都有一定的溫度,黑洞越大,溫度越低,蒸發也越微弱,黑洞越小;溫度越高,蒸發越強烈。小黑洞由於蒸發,質量就會迅速減小;質量小了,溫度就變得更高;溫度高了,蒸發又進一步更快........這樣下去,黑洞的蒸發就變得越來越激烈,最後終於以猛烈的爆發而告終,這就是不斷向外噴射物質的白洞了。不過這種說法,有沒有白洞?目前還是持保留態度,必須尋找更多天文觀測證據才能確定。

利用黑洞做時光旅行:

黑洞只可能用於進入未來!就目前所知,在我們的宇宙中,似乎不可能回到過去。依照愛因斯坦的廣義相對論與哈佛大學物理學家 Pound 及Rebka 的實驗證明,在重力場中,外部的觀察者會看到強重力場中的時鐘走的較慢,這類似於狹義相對論中時間延遲 (time dilation)的效應,而且其條件為除了重力紅位移效應外,兩者之間沒有其他任何相對運動。也就是說,若 A 為朝向黑洞之強重力場中運動的人員,並且固定每秒鐘發出一個光波訊號,在遠距離外的 B 觀察者所看到 A 人員發出的光波訊號間隔時間會越來越長,從一秒鐘到一分鐘、一小時甚至更長。當 A 越接近黑洞的事件地平面,遠方觀察者 B 所看到的光波訊號間隔越長,也只有能量更高的光子可以脫離黑洞的重力場。當 A 穿過事件地平面進入黑洞後,最後一個發出的光波訊號會以幾乎無限大的紅位移傳送出來。如果A 的光源為一兆電子伏特能量的 r-射線,當傳送到觀察者 B 時可能已經變成只有 0.00001 電子伏特的無線電波!雖然光源 A 仍舊維持在每秒鐘發出一個信號,但觀察者 B 收到信號的間隔可能隨著光源越接近黑洞而越長,可能是一分鐘、兩分鐘。換句話說,對於 A 本身來說每過一秒鐘,對於觀察者來說卻已過了數分鐘之久。就本質上來看,A 的時間流動比觀察者 B 為慢,如果在 A 進入黑洞前能夠再與 B 會合,將會發現 A 的時鐘比 B 走得慢多了,這段也許只花了 A 幾小時的行程,在 B 看來可能已過了幾千小時!質量為太陽大小的黑洞,在接近黑洞附近時其重力潮汐十分巨大,所以在 A 到達事件地平面幾百公里前,便已經被拉扯成麵條那樣細長的碎片了。但是對於超巨質量的黑洞來說,雖然其質量可能達太陽的數十億倍,在事件地平面附近的重力潮汐力反而可能非常小,A 或許有脫逃的機會,能夠穿越這個單向的屏障(也許沒有)。原則上,假如 A 能夠在進入事件地平面前幾釐米前脫逃出來的話,那麼 A 所進入的時間將是外界觀察者 B 認知中的未來世界,也許是數千年後,但是對於 A 來說,只不過經歷幾小時而已。該注意的是,上面的例子只是描述接近與逃離黑洞、並進入未來世界的過程而已,數據是為了加強描述的效果而虛設的,並非真實計算結果。詳細的計算方法很難在此敘述清楚。

關於黑洞的其他問題:

黑洞會“長大”嗎?

是的,黑洞會藉著吸入物質而逐漸長大。一般恆星質量的黑洞可以藉著吸入其伴星的物質而使本身質量加大。超巨質量黑洞則是在數十億年演化期間中藉著吸入數百萬顆恆星而形成。目前黑洞吸入物質的過程仍在研究中,但黑洞的確是宇宙中的嗜食狂,很難滿足它的胃口。

兩個黑洞相撞會有何結果?

當兩者相距仍有一段距離時,它們之間的重力交互作用與一般正常星體無異。一個太陽質量的黑洞直徑約3公里,當它們相距約幾百公里時,其外形開始變形,即事件地平面已不再是球面(如果是非自轉黑洞)。當它們更靠近時,在巨大的加速力下,所有加速的物質都會放出重力輻射,雙黑洞系統的能量由此流失。由於質量與能量在物理上是等效的,所以雙黑洞系統的能量流失相當於其總質量的減少。在幾分鐘內,兩個黑洞的事件地平面開始互相穿透,如果我們能目睹這整個過程,將會看到兩個黑洞合併成一個新的黑洞,其質量因重力輻射而比先前兩個黑洞質量之總合稍低。根據超級電腦的計算結果,合併所造成的質量損失約 10%,新黑洞的表面積也比先前兩者之合略小。

如果黑洞進入太陽系,地球會受影響嗎?

不見得會,但是真正對人類生活的影響則要視其質量的大小而定。一個木星質量的黑洞直徑只有一米左右,只有藉著行星軌道的擾動才會偵測、感知它的存在。被影響的行星也許會變成像彗星一樣的高離心率天體。如果發生在地球上,可能導致生物的滅絕,絕大部分人類也會因低溫、動植物無法生長與液態水短少而死亡。如果來襲的是一顆太陽質量的黑洞,儘管其直徑只有兩公里大,行星的軌道不只會受到極大的擾動,甚至可能會完全被彈射離開太陽系。
參考: 馬駬,1995,星系世界。台北,牛頓出版社。/ 新世紀編輯小組,1987,宇宙的噴出口─白洞。銀禾文化事業。/卞毓麟,2000,不知道的世界─天文篇。新竹市,凡異出版社。 /台北市天文科學教育館(http://www.tam.gov.tw)。/ http://www.cc.nctu.edu.tw/~tseng327/mid-term/6/6.htm
2007-04-19 10:51 pm
有一個黑色圓形,會吞食人
2007-04-19 10:24 pm
最原始的黑洞概念:
黑洞最原始的概念,是在1783年由劍橋學者米契爾(John Michell)首先提出,他最先提出黑洞的可能性,他所認知的時空是牛頓的絕對時空概念,當時他認為如果一個物體的「脫離速度」無限大的時候,則連光線也沒有辦法逃離這個物體的吸引,他把當時所觀看到的這種星體稱做「暗恆星」。

黑洞是根據現代的物理理論和天文學理論,所預言的在宇宙空間中存在的一種天體區域。歷史上, 法國力學家拉普拉斯曾預言:「一個密度如地球, 而直徑為 250 個太陽的發光恆星, 由於其引力的作用, 將不允許任何光線離開它。由於這個原因, 宇宙中最大的發光天體, 卻不會被我們看見」。黑洞是由一個質量相當大的天體,在核能耗盡死亡後發生引力塌縮後形成。根據牛頓萬有引力定理, 由於黑洞的第一宇宙速度過大, 連光也逃逸不出來, 故名黑洞.在此區域內的萬有引力非常強大,任何物質都不可能從此區域內逃逸出去,甚至光線都被它強大的引力拉回,因此黑洞本身不會發光,不能用天文望遠鏡直接觀測到,是黑漆漆的天體,但天文學家可藉觀察黑洞周圍物質被吸引時的情況,找出黑洞位置。

甚麼情況下會產生黑洞
•紅超巨星:大質量恆星
•超新星爆炸: 3倍以上
•恆星質量在太陽的30倍以上
或殘核質量在3倍太陽質量以上

甚麼情況下會發生黑洞:
超新星爆炸除了往外炸開的殘骸之外,原先核心部分仍繼續向內塌縮。這時有兩種可能的情況會發生。核心質量很大的,一般認為大約大於3到5個太陽質量,會一直塌縮下去,變成一種很奇怪的物體:黑洞
大質量的恆星演化到中心的碳氧核心向內收縮時,因為質量夠大,內縮的萬有引力夠強,以致於電子簡併的壓力不足以抵擋萬有引力,核心於是持續收縮,溫度升高,直到碳和氧可以進行更進一步的融合反應,形成更重的元素,例如氖和鎂。在核心部分,這樣的,收縮融合,再收縮融合,的過程一直接續發生,直到合成鐵為止
在這些過程當中,恆星的整個體積也是反覆地膨脹與收縮,也因此有很劇烈的質量散失。它們噴發散失了大量的物質,造成這兩幅特殊的景像。而事實上,它們接下來隨時可能會發生的,則是更壯烈的事 件─超新星爆炸。
2007-04-19 10:21 pm
黑洞是引力極為強大的一個物體
由於黑洞的密度極高所以引力大得連光也不可幸免
2007-04-19 10:10 pm
黑洞是根據現代的物理理論和天文學理論,所預言的在宇宙空間中存在的一種天體區域。黑洞是由一個質量相當大的天體,在核能耗盡死亡後發生引力塌縮後形成。根據牛頓萬有引力定理,由於黑洞的第一宇宙速度過大連光也逃逸不出來,故名黑洞.在此區域內的萬有引力非常強大,任何物質都不可能從此區域內逃逸出去,甚至光線都被它強大的引力拉回,因此黑洞不會發光,不能用天文望遠鏡看到,是黑漆漆的天體,但天文學家可藉觀察黑洞周圍物質被吸引時的情況,找出黑洞位置。

目錄 [隱藏]
1 尺寸和質量
2 特性
3 分類
4 微黑洞
5 否認黑洞存在的一些觀點
6 請參看
7 外部連結



[編輯]
尺寸和質量

質量達太陽10倍的黑洞之電腦模擬圖黑洞是由大約大於太陽質量的3.2倍的天體發生引力坍塌後形成的(小於1.4個太陽質量的恆星,會變成白矮星)。天文學的觀測表明,在很多星系的中心,包括銀河系,都存在超過太陽質量上億倍的超大質量黑洞。

根據愛因斯坦的廣義相對論,黑洞是可以預測的。他們發生於史瓦茲度量。這是由卡爾.史瓦茲於1915年發現的愛因斯坦方程的最簡單解。

根據史瓦茲解,如果一個重力天體的半徑小於一個特定的值,天體將會發生坍塌,這個半徑就叫做史瓦茲半徑。在這個半徑以下的天體,其間的時空彎曲得如此厲害,以至於其發射的所有射線,無論是來自什麼方向的,都將被吸引入這個天體的中心。因為相對論指出任何物質都不可能超越光速,在史瓦茲半徑以下的天體的任何物質——包括重力天體的組成物質——都將塌陷於中心部分。一個有理論上無限密度組成的點組成重力奇點(gravitational singularity)。由於在史瓦茲半徑內連光線都不能逃出黑洞,所以一個典型的黑洞確實是「黑」的。

史瓦茲半徑由下面式子給出:



G是萬有引力常數,M是天體的質量,c是光速。對於一個與地球質量相等的天體,其史瓦茲半徑只是9毫米。




[編輯]
特性
目前公認的理論認為,黑洞只有三個物理量有意義:質量、電荷、角動量。也就是說:對於一個黑洞,一旦這三個物理量確定下來了,這個黑洞的特性也就唯一確定了,這稱為黑洞的無毛定理,或者三毛定理。

[編輯]
分類
黑洞可以分為史瓦茲黑洞、帶電黑洞、科爾黑洞和科爾紐曼黑洞。 史瓦茲黑洞是這四種黑洞中最簡單的,科爾紐曼黑洞是帶電並且旋轉的黑洞。

[編輯]
微黑洞
微黑洞是理論預言的一類黑洞,目前尚無證據支持微黑洞的存在。它們誕生於宇宙大爆炸初期,質量非常小,根據霍金的理論,黑洞質量越小,「蒸發」越快。因此如果存在微黑洞,那麼它們現在一定已經蒸發殆盡了。

[編輯]
否認黑洞存在的一些觀點
量子力學方面的反駁:黑洞中心的奇點具有量子不穩定性,所以整個黑洞不可能穩定存在。
目前發現的黑洞是一些暗能量星:美國加利福尼亞勞倫斯·利弗莫爾國家實驗室的天體物理學家喬治·錢普拉因等認為,目前發現的黑洞是一些暗能量星,真正意義上的黑洞是不存在的。
[編輯]
請參看
物理學:了解更多物理學關於天體的理論
天文學
黑洞物理學時間表
天體:宇宙中存在各種天體
白洞
中子星
超大質量黑洞
[編輯]
外部連結
Jilian的黑洞教程
超大質量黑洞
Schwarzschild 幾何
參考資料:
http://zh.wikipedia.org/wiki/%E9%BB%91%E6%B4%9E
當一個巨大的恆星(質量是太陽質量的8倍以上)死亡時,恆星的殘骸可能會形成黑洞。而黑洞的形成是因為大質量的恆星在演化的未期都會發生超新星爆炸,引力的坍縮,大到連中子星這樣極為緊密的結構都支撐不住,星體就會繼續收縮下去,直到成為無法想像的緊密成為一點,這就是「黑洞」。黑洞所包含的物質緊密,產生的重力也強得無法想像,強到連光線都跑不出來,因此而得名。任何東西一旦掉到黑洞,便被分解、壓縮而成為黑洞的一部分。

而黑洞的概念是由愛因斯坦廣義相對論所推導出來的結論:一個核反應完全停止的星體,無力頂住萬有引力而坍縮;當原子被壓破時,就會變成白矮星,而恆星量較大時,則還會敲開原子核,變成擠成一團、密度更大百萬倍的中子星;如果坍縮的恆星質量更大時,則坍縮還會進行下去,所有物質會無可避免、永遠坍縮下去,所有質量將集中在一個沒有大小的「奇異點」(singularity)上。

奇異點周圍的重力也特別大,在某個範圍以內,重力龐大得連光線也逃不出去。這個連光線也逃不出去的面,稱為事相面(event horizon)。光線和任何物質都只能從事相面外部進入其內部,而無法從裡邊逸出。這個事相面的裡邊就是黑洞。黑洞是個極為單純的星體,只包括位於中央的奇異點和圍繞異點的事相面。事相面內除了奇異點之外,連一個原子也沒有。黑洞與黑洞之間的區別,只能從質量、自旋角度動量(spin angulaq momentum)及電荷三個性質來判斷。

黑洞不發光,就不可能發現它的存在的證據了!其實不然;例如當周圍的物質被吸引時,卻會透露出黑洞的存在。圍繞黑洞的雲氣會以極高的速度運動,若偵測到氣體圍繞著非常小的區域高速運動,我們便能推測該區域可能有個黑洞。而當物質被吸入黑洞時,因這些氣體由質子及電子的電漿組成,彼此摩擦而成高溫狀態,便會放出x及r射光,於是我們便可察覺黑洞的存在。
黑洞是否真的能吸進所有東西!
1998 哈伯發現圓盤環繞這巨大黑洞 (質量達三億個太陽)的黑洞,而圍繞它的是橢圓星系NGC 7052(位於狐狸座,距地球191,000,000光年 ),而造成這現象可能是古代星系碰撞之後所殘留的,而這個圓盤狀物體可能在幾十億年級將被黑洞所吞噬。
離中心 186光年的圓盤就像是一個轉動中的巨大旋轉木馬,速率可達時速 341,000英里(每秒 155公里),快速的旋轉提供給我們測量黑洞對氣體萬有引力大小的重要指標。雖然黑洞質量有太陽的三億倍,但其比重只佔NGC 7052星系總質量的百分之0.05,但這個圓盤還是比它輕了一百多倍,而它所擁有的原料還可以形成三百萬顆像太陽的質量,

圓盤中央較亮的部分是一星球的大集團,而它支付黑洞周圍強大的重力,黑洞和圓盤並無相同的起源,有可能是圓盤是在黑洞形成之後,因星系與鄰近較小的星系碰撞後形成的 。
Massive Black Holes Dwell In Most Galaxies, According To Hubble Census
根據哈伯太空望遠鏡的觀測,天文學家得知系外星系NGC3377等的中心有巨大黑洞存在。再者,距離地球1,600萬光年,NGC4486B有2個中心核(超大黑洞),兩個黑洞可能構成雙星系。 圖右上半人馬座A星系,星系最大的特徵是有一個巨大的塵埃道(紫色),把它一分為二。
黑洞作為一個發展終極,必然引致另一個終極,就是白洞。其實膨脹的大爆發宇宙論中,早就碰到了原初火球的奇點問題,這個問題其實一直困擾著科學家們。這個奇點的最大質量與密度和黑洞的奇點是相似的,但他們的活動機制卻恰恰相反。高能量超密物質的發現,顯示黑洞存在的可能,自然也顯示白洞存在的可能。如果宇宙物質按不同的路徑和時間走到終極,那麼也可能按不同的時間和路徑從原始出發,亦即在大爆發之初的大白洞發生後,仍可能出現小爆發小白洞。而且,流入黑洞的物質命運究竟如何呢?是永遠累積在無窮小的奇點中,直到宇宙毀滅,還是在另一個宇宙湧出呢?如果黑洞從有到無,那白洞就應從無到有。60年代的蘇聯科學家開始提出白洞的概念,科學家做了很多工作,但這概念不像黑洞這麼通行,看來白洞似乎更虛幻了。問題是我們已經對引力場較為熟悉,從恆星、星系演化為黑洞有數理可循,但白洞靠什麼來觸發,目前卻依然茫然無緒。無論如何宇宙至少觸發過一次,所以白洞的研究顯然與宇宙起源的研究更有密切的關係,因而白洞學說通常與宇宙學及結合起來。人們努力的方向不在於黑白洞相對的哲學辯論,而在於它的物理機制問題。從現有狀態去推求終末,總容易些,相反的從現有狀態去探索原始,難免茫無頭緒。


收錄日期: 2021-04-12 20:21:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070419000051KK01507

檢視 Wayback Machine 備份