{urgent} 幾題困難的a math 問題

2007-04-15 11:02 pm
1. 解方程|cos x|-|sin x|=sin x-cos x, 其中0 <_ x <_ π

2. 己知sin θ 和cos θ 是方程 x^2+px+q=0的根
以p, q表示 2sin^2(θ/2)(cos(θ/2)- sin(θ/2))^2

3. 己知ΔABC中, ∠A, ∠B為銳角, sin A= 5/13, sin B= 3/5
sin C= sin (A+B), 不用計算機, 計算sin C值

4. 以sin θ表示sin 3θ

5. 證明cos 3θ= 4cos^3θ-3cosθ

回答 (3)

2007-04-16 12:18 am
✔ 最佳答案
1)
Case 1) 0<_ x <_ π/2
|cos x|-|sin x|= sin x - cos x
    cos x - sin x = sin x - cos x
     2 cos x = 2 sin x
      tan x = 1
        x = π / 4 //

Case 2) π/2 < x <_ π
|cos x|-|sin x|= sin x - cos x
  (- cos x ) - sin x = sin x - cos x
        0 = 2 sin x
       sin x = 0
        x = π
所以, x = π/4 或 π.

2)
As sin θ and cos θ are the roots of the equation x^2+px+q=0
(已知sin θ和cos θ為方程x^2+px+q=0的根)

sin θ + cos θ = -p/1 = -p
sin θ cos θ = q/1 = q

 2sin^2 θ/2 ( cos θ/2 - sin θ/2)^2
= 2sin^2 θ/2 (cos^2 θ/2 - 2cos θ/2 sin θ/2 + sin^2 θ/2)
= 2sin^2 θ/2 (1 - 2 sin θ/2 cos θ/2) <=[sin^2 t +cos^2 t = 1]
= 2sin^2 θ/2 (1 - sin θ) <=[sin 2t = 2sin t cos t]
= (1-cos θ)(1 - sin θ) <=[cos2t = 1 - 2sin^2 t => 2sin^2 t = 1 - cos 2t]
= 1 - cos θ - sin θ + sin θ cos θ
= 1 - (cos θ + sin θ) + sin θ cos θ
= 1 - (-p) + q
= p + q + 1 //

3) 要證明sin C = sin (A+B) 嗎?
 sin C = sin [π - (A+B) ] (三角形的內角和)
    = sin (A+B) //

 sin A = 5/13 => cos A = 12/13
 sin B = 3/5 => cos B = 4/5 <=[這兩步自己畫直角三角形吧]

 所以,sin C = sin(A+B)
      = sin A cos B + cos A sin B <=[公式]
      = (5/13)(4/5) + (12/13)(3/13)
      = 20/65 + 36/65
      = 56/65 //

4) sin 3θ = sin(2θ+θ)
    = sin 2θ cos θ + cos 2θ sin θ
    = (2 sin θ cos θ)cos θ + (1 - 2sin^2 θ) sin θ
[註: sin2t = 2sin t cos t , cos2t = cos^2 t - sin^2 t = 2cos^2 t -1 = 1 - 2 sin^2 t]
    = 2 sin θ cos^2 θ + sin θ - 2sin^3 θ
    = 2 sin θ (1 - sin^2 θ) + sin θ - 2 sin^3 θ <=[sin^2 t + cos^2 t = 1]
    = 2 sin θ - 2 sin^3 θ + sin θ - 2 sin^3 θ
    = 3 sin θ - 4 sin^3 θ //

5)cos 3θ = cos(2θ+θ)
    = cos 2θ cos θ - sin 2θ sinθ
    = (2 cos^2 θ - 1) cos θ - (2 sin θ cos θ) sin θ <=[同上註]
    = 2 cos^3 θ - cos θ - 2 cos θ sin^2 θ
    = 2 cos^3 θ - cos θ - 2 cos θ (1-cos^2 θ)
    = 2 cos^3 θ - cos θ - 2 cos θ + 2 cos^3 θ
    = 4 cos^3 θ - 3 cos θ //

2007-04-17 20:10:28 補充:
回應你既問題先.分Case的目的在於察看0≦θ≦π裡 θ 對cos θ 及 sin θ的影響.Case 2) π/2 ≦ θ ≦ π 入面, (第二象限)cos θ 係負數 , 而 sin θ 係正數.故 | cos θ | = - cos θ (絕對值的cos θ取了cos θ的正值)而 | sin θ | = sin θ (sin θ在第一、二象限皆為正數)所以, |cos x|-|sin x|變成 - cos θ - sin θ .

2007-04-17 20:10:43 補充:
你不妨嘗試代θ = π/2 入左方同右方L.H.S = |cos π/2|-|sin π/2|   = 0 - 1   = -1R.H.S = sin π/2 - cos π/2   = 1 - 0   = 1L.H.S =/= R.H.S所以 π/2 並不是答案.
參考: by My Maths
2007-04-15 11:23 pm
5.證明cos 3θ= 4cos^3θ-3cosθ

左式:cos3θ=cos(3θ+3θ)
=cosθ(2cos^2-1)-sin(2sinθcosθ)
=2cos^3 θ-cosθ-2sin^2 θcosθ
=2cos^3 θ-cosθ-2(1-cos^2 θ)cosθ
=2cos^3 θ-cosθ-2cosθ+cos^3 θ
=4cos^3 θ-3cosθ
=右式

2007-04-15 15:45:02 補充:
4.以sin θ表示sin 3θsin3θ =sinθcos2θ+cosθsin2θ =sinθ(1-2sin^2 θ)+cosθ(2sinθcosθ) =sinθ-2sin^3 θ+2sinθcos^2 θ =sinθ-2sin^3θ+2sinθ(1-SIN^ θ) =sinθ-2sin^3 θ+2sinθ-2sin^3 θ =3sinθ-4sin^3 θ
2007-04-15 11:12 pm
4. sin3θ = sin(2θ+θ)
= sin(2θcosθ + cos2θsinθ
= (2sinθcosθ)cosθ + (1+2(sinθ)^2)sinθ
= 2sinθ(1-(sinθ)^2) + sinθ - 2(sinθ)^3
= 3sinθ - 4(sinθ)^3


收錄日期: 2021-04-12 19:38:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070415000051KK02868

檢視 Wayback Machine 備份