✔ 最佳答案
1)
Case 1) 0<_ x <_ π/2
|cos x|-|sin x|= sin x - cos x
cos x - sin x = sin x - cos x
2 cos x = 2 sin x
tan x = 1
x = π / 4 //
Case 2) π/2 < x <_ π
|cos x|-|sin x|= sin x - cos x
(- cos x ) - sin x = sin x - cos x
0 = 2 sin x
sin x = 0
x = π
所以, x = π/4 或 π.
2)
As sin θ and cos θ are the roots of the equation x^2+px+q=0
(已知sin θ和cos θ為方程x^2+px+q=0的根)
sin θ + cos θ = -p/1 = -p
sin θ cos θ = q/1 = q
2sin^2 θ/2 ( cos θ/2 - sin θ/2)^2
= 2sin^2 θ/2 (cos^2 θ/2 - 2cos θ/2 sin θ/2 + sin^2 θ/2)
= 2sin^2 θ/2 (1 - 2 sin θ/2 cos θ/2) <=[sin^2 t +cos^2 t = 1]
= 2sin^2 θ/2 (1 - sin θ) <=[sin 2t = 2sin t cos t]
= (1-cos θ)(1 - sin θ) <=[cos2t = 1 - 2sin^2 t => 2sin^2 t = 1 - cos 2t]
= 1 - cos θ - sin θ + sin θ cos θ
= 1 - (cos θ + sin θ) + sin θ cos θ
= 1 - (-p) + q
= p + q + 1 //
3) 要證明sin C = sin (A+B) 嗎?
sin C = sin [π - (A+B) ] (三角形的內角和)
= sin (A+B) //
sin A = 5/13 => cos A = 12/13
sin B = 3/5 => cos B = 4/5 <=[這兩步自己畫直角三角形吧]
所以,sin C = sin(A+B)
= sin A cos B + cos A sin B <=[公式]
= (5/13)(4/5) + (12/13)(3/13)
= 20/65 + 36/65
= 56/65 //
4) sin 3θ = sin(2θ+θ)
= sin 2θ cos θ + cos 2θ sin θ
= (2 sin θ cos θ)cos θ + (1 - 2sin^2 θ) sin θ
[註: sin2t = 2sin t cos t , cos2t = cos^2 t - sin^2 t = 2cos^2 t -1 = 1 - 2 sin^2 t]
= 2 sin θ cos^2 θ + sin θ - 2sin^3 θ
= 2 sin θ (1 - sin^2 θ) + sin θ - 2 sin^3 θ <=[sin^2 t + cos^2 t = 1]
= 2 sin θ - 2 sin^3 θ + sin θ - 2 sin^3 θ
= 3 sin θ - 4 sin^3 θ //
5)cos 3θ = cos(2θ+θ)
= cos 2θ cos θ - sin 2θ sinθ
= (2 cos^2 θ - 1) cos θ - (2 sin θ cos θ) sin θ <=[同上註]
= 2 cos^3 θ - cos θ - 2 cos θ sin^2 θ
= 2 cos^3 θ - cos θ - 2 cos θ (1-cos^2 θ)
= 2 cos^3 θ - cos θ - 2 cos θ + 2 cos^3 θ
= 4 cos^3 θ - 3 cos θ //
2007-04-17 20:10:28 補充:
回應你既問題先.分Case的目的在於察看0≦θ≦π裡 θ 對cos θ 及 sin θ的影響.Case 2) π/2 ≦ θ ≦ π 入面, (第二象限)cos θ 係負數 , 而 sin θ 係正數.故 | cos θ | = - cos θ (絕對值的cos θ取了cos θ的正值)而 | sin θ | = sin θ (sin θ在第一、二象限皆為正數)所以, |cos x|-|sin x|變成 - cos θ - sin θ .
2007-04-17 20:10:43 補充:
你不妨嘗試代θ = π/2 入左方同右方L.H.S = |cos π/2|-|sin π/2| = 0 - 1 = -1R.H.S = sin π/2 - cos π/2 = 1 - 0 = 1L.H.S =/= R.H.S所以 π/2 並不是答案.