F4 A Maths

2007-04-15 7:17 pm
已知sin y和cos y為方程x^2+px+q=0的根
試以p和q表示
2sin^2 y/2 ( cos y/2 - sin y/2)^2

回答 (1)

2007-04-15 7:33 pm
✔ 最佳答案
As siny and cos y are the roots of the equation x^2+px+q=0
(已知sin y和cos y為方程x^2+px+q=0的根)

sin y + cos y = -p/1 = -p
sin y cos y = q/1 = q

 2sin^2 y/2 ( cos y/2 - sin y/2)^2
= 2sin^2 y/2 (cos^2 y/2 - 2cos y/2 sin y/2 + sin^2 y/2)
= 2sin^2 y/2 (1 - 2 sin y/2 cos y/2) <=[sin^2 t +cos^2 t = 1]
= 2sin^2 y/2 (1 - sin y) <=[sin 2t = 2sin t cos t]
= (1-cos y)(1 - sin y) <=[cos2t = 1 - 2sin^2 t => 2sin^2 t = 1 - cos 2t]
= 1 - cos y - sin y + sin y cos y
= 1 - (cos y + sin y) + sin y cos y
= 1 - (-p) + q
= p + q + 1 //
參考: by My Maths


收錄日期: 2021-04-13 00:44:01
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070415000051KK01365

檢視 Wayback Machine 備份