如何證明 integration (積分) 可用來計算「面積」?

2007-04-15 6:24 pm
如果 y=f(x) 是一條 integral formula,是 m=k(x) 的derivative。如果把它 integrate 除了可還原成 m 外,還可用來計算自己條 curve 和 x-axis 之間的面積。我不太明白為何它可以用來計算面積。 y△x 是一個微量面積 △a,為何一 integrate y 就可以將無限個 △a 相加起來呢?可以 prove 出來嗎?

回答 (2)

2007-04-16 6:07 am
✔ 最佳答案
In fact, in general, the value of definite integral in most calculation does not represesnt the area of a region. Instead, the definite integral is actually the limit of a sum.

I don't intend to give any rigorous proof for integral here (since you will learn that in F.6 pure maths or university level maths). However, i will sketch the reason here.

Consider a non-negative function y = f(x) on [a, b], the limit of sum is the 'area' bounded by f(x), the axis x = a and x = b, and x-axis.
So lim Σf(xi)(xi - xi+1) (i from 1 to n) will leads to actual area
[here, xi are the point lying between a and b, we select n tends to infinity, consequently the division of the interval by x1, x2, ... will be much smaller and so the result is obtained.]
2007-04-15 11:11 pm
這是一個很偉大的Theorem Result

它的名字是fundamental theorem of calculus.

http://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus


收錄日期: 2021-04-23 16:53:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070415000051KK01108

檢視 Wayback Machine 備份