Atomic physics

2007-04-14 7:34 am
The decay of potassium-40 to argon-40 can be used to date igneous rocks because of its long half-life. An igneous rock just formed does not contain argon gas and the gas formed in decay are trapped inside the rock. A rock sample contains potassium-40 and argon-40 in the ratio 1: 15. How many half-lives of potassium-40 have elapsed?

Answer is 4.
Can anyone help me to explain how to calculate ? Thx for helping!

回答 (2)

2007-04-14 8:09 am
✔ 最佳答案
After each half-life, the proportion of K in the mixture is 1/2 times the original proportion.

At present, the ratio of K in the mixture 1 : 15+1 = 1 : 16 , i.e. the proportion of K in the mixture is 1/16.

Let x be the no. of half-life.

(1/2)^x = 1/16

x = 4
2007-04-14 8:23 am
Let m kg be the original mass of K-40 on the rock samle,
since after decay, there is m/16 kg left and 15m/16 kg have been decayed to Ar-40
thus, m/2^n = m/16 where n is the no of half-lives lapsed
i.e. 2^n = 16
solving for n gives =4


收錄日期: 2021-04-29 17:21:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070413000051KK06716

檢視 Wayback Machine 備份