✔ 最佳答案
1. This is a sequence called fibonacci sequence*(費伯納西數列). The key is the nth element is the sum of the n-1th and n-2th element.
eg. the 3rd element = the 1st element + the 2nd element = 1+1 = 2
therefore, the two element is 21+34 = 55 and 34+55 = 89
2. The first element is 2 = 2^1
The second element is 4 = 2^2
....
The nth element is 2^n.
3. The nth element of an arithmetic sequence is a + (n-1)d = (a-d) + nd = 6-2n
where a is the first term and d is the common difference
therefore a-d = 6; d = -2.
so a = 4 and d = -2
The first term is 4
The fifth term is 4 + (5-1) * -2 = -4.
4. 2^-3+(-2)^3+(-2)^-3 = (1/8) + (-8) + (-1/8) = -8
5. a^-2b^3/ab= a^(-2b^3-1)b^-1
6. X : -1| 0| 2|
Y: -2(-1)+3=5| -2(0)+3=3|-2(2)+3=-1
7.
a) a^2+3a-3b-ab=a(a+3)-b(a+3)=(a+3)(a-b)
b) 4x^2-25y^2=(2x)^2-(5y)^2=(2x+5y)(2x-5y) [difference between 2 square]
c) 4x^2+12xy+9^y2=(2x)^2+2(2x)(3y)+(3y)^2=(2x+3y)^2 [Perfect square]
d) Same as part c
e) 3x^2+8x+4=3x^2+6x+2x+4=3x(x+2)+2(x+2)=(x+2)(3x+2)
*
根據高德納的《計算機程序設計藝術》,1150年印度數學家Gopala和Hemachandra在研究箱子包裝物件長闊剛好為1和2的可行方法數目時,首先描述這個數列。在西方,最先研究這個數列的人是比薩的李奧納多(又名斐波那契),他描述兔子生長的數目時用上了這數列。
第一個月有一對剛誕生的兔子
第兩個月之後牠們可以生育
每月每對可生育的兔子會誕生下一對新兔子
兔子永不死去
假設在n月有新生及可生育的兔子總共a對,n+1月就總共有b對。在n+2月必定總共有a+b對:因為在n+2月的時候,所有在n月就已存在的a對兔子皆已可以生育並誕下a對後代;同時在前一月(n+1月)之b對兔子中,在當月屬於新誕生的兔子尚不能生育。
Source:
http://zh.wikipedia.org/wiki/%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0%E5%88%97#.E6.BA.90.E8.B5.B7
2007-04-12 18:45:42 補充:
The correct answer for7d) 3(x^2 4xy 3y^2)