F. 3 數學問題 (Trigonmetric Relations) 急!!!

2007-04-12 6:14 am
[ 1 / ( tanΘ ) ] + [ sinΘ / ( 1 + cosΘ ) ]



**請附上詳細解釋,總共1題,十二萬分感激 !

^^

回答 (3)

2007-04-12 6:24 am
✔ 最佳答案
(cos Θ / sin Θ) + [sin Θ (1 - cos Θ) / (1 + cosΘ ) (1 - cos Θ) ]

= (cos Θ / sin Θ) + [sin Θ (1 - cos Θ) / (1 - cos^2 Θ) ]]

since cos^2 Θ + sin^2 Θ = 1, so 1 - cos^2 Θ = sin^2 Θ
= (cos Θ / sin Θ) + [sin Θ (1 - cos Θ) / (sin^2 Θ) ]

= (cos Θ / sin Θ) + (1 - cos Θ) / sin Θ

= [ (cos Θ) + (1 - cos Θ) ]/ sin Θ

= 1/ sin Θ

2007-04-11 22:25:29 補充:
since tanΘ = sin Θ / cos Θ, so 1/ tanΘ = cos Θ / sin Θ
參考: by calculation myself
2007-04-12 6:33 am
 [ 1 / ( tanΘ ) ] + [ sinΘ / ( 1 + cosΘ ) ]
=[1 / (sinΘ / cosΘ) ] + [ sinΘ / ( 1 + cosΘ ) ] ←(tanΘ = sinΘ / cosΘ)
=[cosΘ / sinΘ] + [ sinΘ / ( 1 + cosΘ ) ]
=[cosΘ(1 + cosΘ ) + (sinΘ)sinΘ] / [sinΘ( 1 + cosΘ )] ←(通分母)
=[cosΘ + cosΘ(cosΘ) + sinΘ(sinΘ)] / [sinΘ( 1 + cosΘ )] ←(拆括號)
=(cosΘ + 1) / [sinΘ( 1 + cosΘ )] ←( [sinΘ(sinΘ)+cosΘ(cosΘ)] = 1 )
=[1 / sinΘ] ←(分子與分母約簡)
參考: 自己個腦
2007-04-12 6:28 am
[1 / ( tanΘ ) ] + [ sinΘ / ( 1 + cosΘ ) ]
=(1/sinΘ/cosΘ)+[sinΘ/(1+cosΘ)]
=(cosΘ/sinΘ)+[sinΘ/(1+cosΘ)]
=(cosΘ+cos^2Θ+sin^2Θ)/(sinΘ+cosΘsinΘ) ←通分母
=(cosΘ+1)/sinΘ(1+cosΘ)
=1/sinΘ
=sin^-1Θ

2007-04-12 10:05:55 補充:
我睇到好多人答1/ sin Θ ,其實都可以,e+ d 老師可能都會接受.但寫做sin^ -1Θ 會好小小咁多la.(1/a = a^-1)


收錄日期: 2021-04-13 13:44:28
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070411000051KK06154

檢視 Wayback Machine 備份