太陽直徑是地球直徑多少倍

2007-04-10 11:44 pm
請詳細描述
更新1:

即係多少倍?

回答 (3)

2007-04-10 11:50 pm
✔ 最佳答案
太陽是距離地球最近的恆星,是太陽系的中心天體。太陽系質量的99.87%都集中在太陽。太陽系中的八大行星、小行星、流星、彗星、外海王星天體以及星際塵埃等,都圍繞著太陽運行(公轉)。

太陽的構成
太陽從中心向外可分為核反應區、輻射區、對流層和大氣層。由於太陽外層氣體的透明度極差,人類能夠直接觀測到的是太陽大氣層,從內向外分為光球、色球和日冕3層。

物理特性以及其他特性
太陽是一個主序星,光譜類型為G2V,G2表明它的溫度不高,只在5,500K左右,V代表是主序星,體積也不會太大。G2V恆星具有大約100億年的主序星壽命,通過核子宇宙年代學測定,太陽年齡大約50億年。

在太陽中心,密度為1.5×105kg/m3,熱核反應(核聚變)將氫轉變為氦。每秒鐘有3.9×1045個原子參與核反應。產生的能量以光的形式從太陽表面散發出去。而地球只獲得了太陽總輻射量的22億分之一,為1367瓦/平方公尺(太陽常數)。物理學家可以通過氫彈製造熱核反應。可控核聚變發電站在將來可能成為產生電能的一種方式。

由於溫度高,太陽上的所有物質都處於電漿態,由於太陽不是固體,因此太陽的赤道可以比高緯度地區旋轉得更快。太陽不同緯度的自轉差別造成了它的磁力線隨時間扭曲,引起磁場迴路(magnetic field loops)從太陽表面噴發,並引發形成太陽黑子和日珥。

日冕層密度為1011個原子/m3,光球層為1023個原子/m3。

一段時間以來,人們一直為太陽核反應產生的中微子數量僅僅是理論值的1/3而困惑,即所謂的太陽中微子問題。最近發現中微子具有質量,並且在從太陽到地球的過程中可能轉變為難以檢測到的中微子變種,測量值和理論值一致了。

觀測太陽可以發現如下現象:

太陽黑子
光斑
白光耀斑
日珥
寧靜日珥
爆發日珥
活動日珥
注意:請不要用眼睛直視太陽,否則極有可能會損傷視網膜並造成視力損傷。

結構
太陽是一個近乎完美的球體,其扁率約為900萬分之一,即是說其南北兩極的直徑僅比東西直徑短10公里。在自轉周期方面,由於太陽並非以固態形式存在,因此其兩極和赤道的自轉周期並不相同(赤道約為25天, 兩極則約為35天),整體平均自轉周期約為28天,其緩慢自轉所產生的離心力,以赤道位置計算,還不到其自身重力的1,800萬分之一。雖然太陽本身是太陽系的中心,大質量的木星使質心之偏離中心達一個太陽半徑,但所有行星的總質量還不到太陽的百分之五,因此來自行星的潮汐力並不足以改變太陽的形狀。

太陽不像類地行星般擁有固態表面,其氣體密度從表面至中心會成指數增長。太陽的半徑計法是以光球層的邊緣為終點,其內部的高密度氣體足以令可見光無法通過,而肉眼看見的是太陽的光球層,在0.7太陽半徑範圍內的氣體占整個太陽總質量的大多數。

太陽的內部並不能直接觀測,因高密度的氣體阻隔了電磁輻射,但就像地震學能利用地震產生的震波能研究地球的內部,日震學這個學門,也能利用橫斷過太陽內部的波的壓力,來測量和描繪出太陽內部的構造。配合電腦模擬的輔助,人們便可一覽太陽深處。

核心
在太陽的中心,密度高達150,000 Kg/m3 (是地球上水的密度的150倍),熱核反應 (核聚變) 將 氫 變成氦,釋放出的能量使太陽保持穩定的狀態。 每秒鐘大約有 8.9 ×1037 質子,也就是426公噸氫原子核經由質-能轉換變成氦原子核,每秒鐘釋放出383 ×1024 W 或相當於 9.15 ×1010 百萬噸的TNT 爆炸。核聚變的速率在自我修正下保持平衡:溫度只要略微上升,核心就會膨脹,增加抵擋外圍重量的力量,這會造成核聚變的擾動而修正反應速率;溫度略微下降,核心就會收縮一些,使核聚變的速率提高,使溫度能回復。

由中心至0.2太陽半徑的距離是核心的範圍,是太陽內唯一能進行核聚變釋放出能量的場所。太陽其餘的部份則被這些能量加熱,並將能量向外傳送,途中要經過許多相連的層次,才能到達表面的光球層,然後進入太空之中。

高能量的光子 (γ和X-射線)由核聚變從核心釋放出來後,要經過漫長的時間才能到達表面,緩慢的速度和不斷改變方向的路徑,還有反覆的吸收和再輻射,使到達外圍的光子能量都降低了。估計每個光子抵達表面的旅程平均需要花費5,000萬年的時間[1] ,最快的也要經歷17,000年[2] 。在穿過對流層到達旅程的終點,進入透明的表面光球層時,光子就以可見光的型態逃逸進入太空。每一個在核心的γ射線光子在進入太空前,都已經轉化成數百萬個可見光的光子。微中子也是在核心的核聚變時被釋放出來的,但是與光子不同的是他不會與其它的物質作用,因此幾乎是立刻就由太陽表面逃逸出來。多年來,測量來自太陽的微中子數量都低於理論的數值,因而產生了太陽微中子的迷思,直到我們對微中子有了更多的認識,才以微中子震盪解開了這個謎題。

溫度和密度的變化
在非常接近太陽中心的地區,溫度大約在15,000,000K,密度大約是150g/cc(大約十倍於金或鉛的密度)。當由中心向太陽表面移動時,溫度和密度同時都會降低。核心邊緣的溫度只有中心的一半,約為7,000,000K,同時密度也降至大約20g/cc(與黃金的密度近似)。由於核反應對溫度和密度非常敏感,核聚變在核心的邊緣幾乎完全停止。
輻射層
從 0.2至約 0.7 太陽半徑,太陽的物質是熱且黏稠的,雖然仍然能夠將熱輻射向外傳輸,但是在這個區域內沒有熱對流的運動,所以離中心距離越遠的地方,溫度就會越低。這種溫度梯度低於絕下降率,所以不會造成物質的流動。熱能的傳輸全靠氫和氦的輻射-離子發射的光子,但只能傳遞很短的距離就會被其他的離子再吸收。

溫度和密度的變化
核心外緣的密度約為20g/cc,至輻射層頂的密度則只有0.2g/cc,遠小於地球上水的密度,在相同的距離中溫度亦從7,000,000K降至2,000,000K。
對流層
從0.7太陽半徑至可見的太陽表面是對流層。此處的太陽物質不再是高熱與黏滯的,電子也開始被原子核束縛住,所以熱能由內向外的傳遞不再依靠輻射,而是經由熱對流產生熱柱,讓熱的物質將能量攜帶至太陽的表面。一旦溫度在在表面下降,這些物質便會往下沉降,再回到對流層內,甚至會回到最深處,從輻射層的頂端再接收熱能。在輻射層頂與對流層底之間,被認為還存在著對流超越區(Convective overshoot),由一些騷亂的湍流將能量由輻射層頂帶進對流層底。

這幾年來,在更多的細節被發現後,這個薄層變得非常引人注意。現在這一層也被認為是產生太陽磁場的磁發電機,流體在橫越這一層時流動速度的改變,能夠擴展磁力線的力量並且增強磁場,同時在經過這一層之後,化學成分好像也突然改變了。

在對流層的熱柱會在太陽的表面形成一種特徵,也就是在觀測時看見的米粒組織和超米粒組織。在對流層內,由內部向外的小湍流,在向表面升起時,就像一部部 "小規模"的發電機,在太陽表面各處引發小區域的磁南極和磁北極。

溫度和密度的變化
在對流層底部的溫度大約是2,000,000K,這已經冷得足夠讓較重的離子(如碳、氮、氧、鈣和鐵)能捕捉住一些電子,使得物質變得更不透明,因此輻射線變得更難以穿透。伴隨著輻射被阻擋的熱能,最後終將使流體被加熱然後沸騰,或說是產生對流。對流運動能迅速的將熱量帶至表面,同時流體在上昇的過程中膨脹和冷卻,到達可見的表面時,溫度已經降至6,000K,密度則僅僅只有0.0000002g/cc(大約是海平面空氣密度的萬分之一)。
光球
光球是太陽可以被肉眼看見的表面,在其下的太陽對可見光是不透明的,陽光從光球向外傳播進太空之中,並將能量也帶離了太陽。透明度的變化歸因於密度與溫度的降低,使會吸收可見光的氫離子(H−)減少。相反的,我們看見的可見光來自電子和氫原子(H)作用產生氫離子(H−)的反應。陽光的光譜與來自6000K(10,340 °F / 5,727 °C)的黑體非常相似,只是多了一些在光球層之上,薄薄的氣體層中的原子造成的吸收線。光球層中粒子的密度是1023/m3 (大約是地球大氣層在海平面密度的1%)。

在早期,研究太陽的光學光譜時,有些譜線和地球上已知的化學元素不能吻合。在1868年,Norman Lockyer假設這些吸收線來自未知的新元素,並依據希臘神話中的太陽神(Helios)命名為氦(Helium)。而直到25年後,才在地球上分離出氦元素。
2007-04-23 3:51 am
一般
2007-04-10 11:56 pm
太陽(Sun)是銀河系上千億顆恆星中的一顆。太陽是太陽系中最大的星體,直徑1,390,000公里,質量1.989x10 30 公斤。它包含全太陽系99.8%以上的質量(最大的行星木星則包含剩餘質量的大部分)。
http://ited.yingwa.edu.hk/~ywc-011503/sun.htm

地球

直徑
12756公里

質量 5.98×1021噸
體積 1.08×1012立方公里

密度(水=1) 5.52
重力 1
http://hk.geocities.com/earthkit97/



2007-04-10 15:56:56 補充:
太陽的直徑大概是地球的109倍。肅然起敬


收錄日期: 2021-04-18 23:34:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070410000051KK03037

檢視 Wayback Machine 備份