數學的問題 10分!!!!!!! 好easy架! 急!!!!!!!!!!!!!!要交功課!help!

2007-04-10 1:46 am
是要一些關於數學的歷史或資料 是但一樣都可以架啦!

最重要的是:絕對不要長篇大論,但資料要精精精精精精精精!!!!!!!!!!!!!!!!!!!!!
精都好重要!!!!!!!!!!!

答案最精簡果個就俾佢做最佳!有10分架!!!!!!!!!!!!! 答案最好就於70-100字內啦!多d都OK !

回答 (5)

2007-04-10 1:52 am
✔ 最佳答案
數學,起源於人類早期的生產活動,為古中國六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語,意思是「學問的基礎」,源於(「科學,知識,學問」)。
數學最早用於人們計數、天文、度量甚至是貿易的需要。這些需要可以簡單地被概括為數學對結構、空間以及時間的研究。
對結構的研究是從數字開始的,首先是從我們稱之為初等代數的——自然數和整數以及它們的算術關係式開始的。更深層次的研究是數論。
對空間的研究則是從幾何學開始的,首先是歐幾里德幾何學和類似於三維空間(也適用於多或少維)的三角學。後來產生了非歐幾里德幾何學,在相對論中扮演著重要角色。
到了16世紀,算術、初等代數、以及三角學等初等數學已大體完備。17世紀變數概念的產生使人們開始研究變化中的量與量的互相關係和圖形間的互相變換。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展。
2007-04-10 2:01 am
The evolution of mathematics might be seen as an ever-increasing series of abstractions, or alternatively an expansion of subject matter. The first abstraction was probably that of numbers. The realization that two apples and two oranges have something in common was a breakthrough in human thought. In addition to recognizing how to count physical objects, prehistoric peoples also recognized how to count abstract quantities, like time — days, seasons, years. Arithmetic (addition, subtraction, multiplication and division), naturally followed. Monolithic monuments testify to knowledge of geometry

數學的演變也許看作為抽象持續增長的系列或者二者擇一地事項擴展。 第一抽象大概是那數字。 二個蘋果和二個桔子有某事共同興趣的認識是在人的想法的突破。 除認可如何之外計數物體,史前人民也認可了如何計數抽象數量,像定期的天,季節,幾年。 算術(加法、減法、增殖和分裂),自然地跟隨了。 整體紀念碑作證到幾何知識
2007-04-10 1:52 am
數學史
維基百科,自由的百科全書
跳转到: 导航, 搜尋
數學,起源於人類早期的生產活動,為古中國六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語μαθηματικός (mathematikós)意思是「學問的基礎」,源於μάθημα (máthema)(「科學,知識,學問」)。

數學最早用於人們計數、天文、度量甚至是貿易的需要。這些需要可以簡單地被概括為數學對結構、空間以及時間的研究。

對結構的研究是從數字開始的,首先是從我們稱之為初等代數的——自然數和整數以及它們的算術關係式開始的。更深層次的研究是數論。

對空間的研究則是從幾何學開始的,首先是歐幾里德幾何學和類似於三維空間(也適用於多或少維)的三角學。後來產生了非歐幾里德幾何學,在相對論中扮演著重要角色。

到了16世紀,算術、初等代數、以及三角學等初等數學已大體完備。17世紀變數概念的產生使人們開始研究變化中的量與量的互相關係和圖形間的互相變換。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展。
2007-04-10 1:51 am
數學,起源於人類早期的生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語μαθηματικός (mathematikós)意思是「學問的基礎」,源於μάθημα (máthema)(「科學,知識,學問」)。

數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。 除了認知到如何去數實際物質的數量,史前的人類亦了解瞭如何去數抽象物質的數量,如時間-日、季節和年。算術(加減乘除)
也自然而然地產生了。古代的石碑亦證實了當時已有幾何的知識。

更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加帝國內用來儲存數據的奇普。歷史上曾有過許多且分歧的記數系統。

從歷史時代的一開始,數學內的主要原理是為了做稅務和貿易等相關計算,為了了解數字間的關係,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。

到了16世紀,算術、初等代數、以及三角學等初等數學已大體完備。17世紀變數概念的產生使人們開始研究變化中的量與量的互相關係和圖形間的互相變換。在研究經典力學的過程中,微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展。

數學從古至今便一直不斷地延展,且與科學有豐富的相互作用,並使兩者都得到好處。數學在歷史上有著許多的發現,並且直至今日都還不斷地發現中。依據Mikhail B. Sevryuk於美國數學會通報2006年1月的期刊中所說,「存在於數學評論資料庫中論文和書籍的數量自1940年(數學評論的創刊年份)現已超過了一百九十萬份,而且每年還增加超過七萬五千份的細目。此一學海的絕大部份為新的數學定理及其證明。」

2007-04-09 17:55:14 補充:
精簡固然重要,但也不可以言之無物!我的回答雖然比較長,但完全符合你的需要-交功課。希望你選我做最佳回答。謝謝!
2007-04-10 1:50 am
數學(Mathematics)是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。[1]

ok?最精精精精精精精精!!!!!!!!!!!!!!!!!!!!!
參考: (^00^)


收錄日期: 2021-04-12 23:49:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070409000051KK03750

檢視 Wayback Machine 備份