不難付加maths第4回...加問篇..=.=+

2007-04-09 5:27 am
已知參MATHS方程式X=t^2和Y=2t,當t=2時,find dy/dx
usedy/dt=dy/dx乘dx/dt

dy/dx
= (dy/dt) / (dx/dt )= [d(2t)/dt丨d(t^2)/dt]唔明why變2/2t
= 2/2t
= 1/t

dy/dx|t=2
= 1/2

可唔可以長細D
更新1:

wwwlllleee我想問: [[[[[[d (x^n) / dx = n*x^(n-1) for any real nos. n]]]]]....唔明.... ^ n係平方變成 consant 丨 d為什麼不見了_________丨 給prove please.........回答我......thankyou.....姐姐@v@

回答 (1)

2007-04-09 10:34 am
✔ 最佳答案
連點解咁變都唔知...有D難搞...最好溫下書...

d ( x ) / dx = 1

d ( kx) / dx = k*d ( x ) / dx = k*1 = k where k is a constant

so, d ( 2t ) / dt = 2

d (x^n) / dx = n*x^(n-1) for any real nos. n

so, d ( t^2 ) / dt = 2*t^(2-1) = 2t

after u find dy/dx , u sub.( 代入 ) t into dy/dx , it is the ans~

hope u understand , but u really really better revision ! add oil la !


收錄日期: 2021-04-20 23:48:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070408000051KK04593

檢視 Wayback Machine 備份