✔ 最佳答案
sin²y (tany +1/tany)
=sin²y [(siny/cosy) +1/(siny/cosy)]
↑運用公式tanθ =sinθ/cosθ,將tany變成siny/cosy
=sin²y [siny/cosy +1(cosy/siny)]
↑ 1/(siny/cosy)中的siny/cosy上下倒轉變成cosy/siny,"除"變成"乘",整個1/(siny/cosy) 變成1(cosy/siny)
=sin²y (siny/cosy +cosy/siny)
↑個1乘咗入去
=sin²y [siny(siny)/cosy(siny) +cosy(cosy)/siny(cosy)]
↑兩個分數通分母,siny/cosy用siny,cosy/siny用cosy
=sin²y [sin²y/cosy(siny) +cos²y/siny(cosy)]
↑兩個分子乘哂
=sin²y [(sin²y +cos²y)/siny(cosy)]
↑兩個分數加埋,分母為siny(cosy)
=sin²y [1/siny(cosy)]
↑運用公式sin²θ +cos²θ =1,將sin²y +cos²y變成1
=sin²y/siny(cosy)
↑sin²y乘入分數1/siny(cosy)
=siny/cosy
↑約去分母中的siny,分母siny(cosy)約成cosy,
而分子則由sin²y約成siny,因為sin²y =siny(siny)
=tany
↑運用公式tanθ =sinθ/cosθ,將siny/cosy變成tany