✔ 最佳答案
cosA - cos2A = 6 sin²(A/2) - 8sin4(A/2)
LHS
= cosA - cos2A
= cosA - (2cos²A -1)
= cosA - 2cos²A +1
RHS
= 6 sin²(A/2) - 8sin4(A/2)
= 2 sin²(A/2) [ 3 - 4sin²(A/2) ]
= 2 [sin(A/2)]² {3 - 4 [sin(A/2)]²}
= 2{±√[(1 - cosA)/2] }² {3- 4 [±√[(1 - cosA)/2]]²}
= 2[(1 - cosA)/2] [3 -4 (1 - cosA)/2]
= (1 - cosA)[3 -2(1 - cosA)]
= (1 - cosA)(1 + 2 cosA)
= cosA - 2cos²A +1
= LHS
therefore, cosA - cos2A = 6 sin²(A/2) - 8sin4(A/2)
P.S. use :
Multiple Angle Formula: cos2θ = 2cos²θ -1
Half Angle Formula: sin(θ/2) = ±√[(1 - cosθ)/2]