(cos^2x) - (sin^2x) = 1-(2sin^2x)

2007-04-01 1:38 am
prove the following identities
(cos^2x) - (sin^2x) = 1-(2sin^2x)


有好多題數唔識,條條都係計到呢到唔識計落去-v-
幫幫我><

回答 (2)

2007-04-01 1:54 am
SINCE RHS=1-(2sin^2x)=1-sin^2x-sin^2x=(1-sin^2x)-sin^2x=cos^2x-sin^2x=LHS(cos^2x+sin^2x=1)
2007-04-01 1:48 am
L.H.S. = (cos^2x) - (sin^2x)
= (1-sin^2x) - (sin^2x)
=1- sin^2x - sin^2x
= 1- 2sin^2x
= R.H.S.
Because L.H.S. = R.H.S.
Therefore it is an identity.
參考: me


收錄日期: 2021-04-13 00:41:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070331000051KK03327

檢視 Wayback Machine 備份