✔ 最佳答案
問題(1)
1/sinX = cosec X
1/cosX =sec X
問題(2) 其他常用的三角恆等式: 〔θ及 ψ是某角〕
I) Trigomometric Relations
sec²θ = 1+ tan²θ
cosec²θ= 1+ cot²θ
II)Half Angle Formula
sin(θ/2) = ±√[(1 - cosθ)/2]
cos(θ/2) =± √[(1 + cosθ)/2]
tan(θ/2) = ±√[(1 - cosθ)/(1 + cosθ)] = (1 - cosθ)/sinθ = sinθ/(1 - cosθ)
If t = tan(θ/2), then
sinθ = 2t/(1 + t²)
cosθ = (1 - t²)/(1 + t²)
tanθ = - 2t/(1 - t²)
III) Compound Angle Formula
sin(θ+ ψ) = sinθcosψ + cosθsinψ
sin(θ- ψ) = sinθcosψ - cosθsinψ
cos(θ+ ψ) = cosθcosψ- sinθsinψ
cos(θ- ψ) = cosθcosψ+ sinθsinψ
tan(θ+ ψ) = (tanθ+ tanψ)/(1 - tanθtanψ)
tan(θ- ψ) = (tanθ- tanψ)/(1 + tanθtanψ)
IV)Multiple Angle Formula
sin2θ = 2 sinθcosθ
cos2θ= cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2 sin²θ
tan2θ = 2tanθ/(1 - tan²θ)
sin3θ = 3sinθ - 4sin 3 θ
cos3θ = 4cos 3 θ - 3cosθ
tan3θ = (3tanθ- tan 3 θ)/(1 - 3 tan²θ)
V) Product-to-Sum Formula
sinθcosψ = 1/2[ sin(θ+ ψ) + sin(θ- ψ)]
cosθsinψ = 1/2[ sin(θ+ ψ) - sin(θ- ψ)]
cosθcosψ = 1/2[ cos(θ+ ψ) + cos(θ- ψ)]
sinθsinψ = 1/2[ cos(θ+ ψ) - cos(θ- ψ)]
VI) Sum-to-Product Formula
sinθ+ sinψ = 2sin[(θ+ ψ)/2]cos[(θ- ψ)/2]
sinθ- sinψ = 2cos[(θ+ ψ)/2]sin[(θ- ψ)/2]
cosθ+ cosψ = 2cos[(θ+ ψ)/2]cos[(θ- ψ)/2]
cosθ- cosψ = - 2sin[(θ+ ψ)/2]sin[(θ- ψ)/2]