F.3 maths

2007-03-26 9:13 pm
tan^2x + 1/(tan^2x) = 1/(sin^2x . cos^2x) - 2

回答 (1)

2007-03-26 9:30 pm
✔ 最佳答案
LHS
= tan²x + 1 /(tan²x)
= ( sin²x/cos²x ) + [1/(sin²x/cos²x) ]
= (sin²x/cos²x) + (cos²x/sin²x)
= (sin²x/cos²x)(sin²x/sin²x) + (cos²x/sin²x)(cos²x/cos²x)
= [(sin²x)²+ (cos²x)² ]/ sin²xcos²x
= [(sin²x)²+ (cos²x)² +2 sin²x cos²x - 2 sin²x cos²x]/ sin²x cos²x
= [(sin²x + cos²x)² - 2 sin²x cos²x ] / sin²x cos²x
= (1- 2 sin²x cos²x)/sin²x cos²x
= [1/(sin²x cos²x)] - 2
= RHS


收錄日期: 2021-04-12 21:20:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070326000051KK01287

檢視 Wayback Machine 備份