(2)一條複角題

2007-03-25 4:26 am
已知tanA = 1/2 及 tanB = 1/5,其中A和B均為銳角。不得計算A和B的值,試求sin(A+B)的值。

回答 (2)

2007-03-25 4:49 am
✔ 最佳答案
已知tanA = 1/2 及 tanB = 1/5,其中A和B均為銳角。不得計算A和B的值,試求sin(A+B)的值。
tanA = 1/2
sinA = 1/[(5)^1/2]
cosA = 2/[(5)^1/2]
tanB = 1/5
sinB = 1/[(26)^1/2]
cosB = 5/[(26)^1/2]
sin(A + B)
= sinAcosB + sinBcosA
= {1/[(5)^1/2]}.{2/[(5)^1/2]} + {1/[(26)^1/2]}.{5/[(26)^1/2]}
= (2/5) + (5/26)
= 77/130

參考: em
2007-03-25 4:55 am
tanA=1/2
tanB=1/5

tan(A+B)=(tanA+tanB)/(1-tanAtanB)
=(1/2+1/5)/(1-1/2 1/5)
=(7/10)/(9/10)
=7/9

sin(A+B)=tan(A+B)/sqrt(1+tan(A+B)^2)
=(7/9)/sqrt(1+(7/9)^2)
=7/sqrt(130)


收錄日期: 2021-04-12 20:07:51
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070324000051KK04373

檢視 Wayback Machine 備份