查詢關於三角學的問題

2007-03-25 2:56 am
以下3題我不懂如何簡化,麻煩列出步驟教學,謝!
1) 1/cos^2θ-(1+tan^2θ)
2) (sinθ+cosθ)^2-1
3) Cosθ/1+sinθ - 1-sinθ/cosθ
更新1:

回backright 是~ (cosθ)/(1+sinθ)-(1-sinθ)/(cosθ))

回答 (1)

2007-03-25 3:53 am
✔ 最佳答案
cos^2θ+sin^2θ=1

1. 1/cos^2θ-(1+tan^2θ)
= (1/cos^2θ-(1+tan^2θ)) * (cos^2θ /cos^2θ)
= (1 - (cos^2θ+sin^2θ) ) /cos^2θ
= (1-1)/cos^2θ
= 0

2. (sinθ+cosθ)^2-1
= cos^2θ+sin^2θ+2sinθcosθ -1
= 2sinθcosθ

3. 係咪cosθ/(1 + sinθ) - 1-sinθ/cosθ??

2007-03-25 03:21:03 補充:
....好彩冇計到, 計計下唔對路, 所以至問下....(cosθ)/(1 sinθ)-(1-sinθ)/(cosθ)=(cos^2θ - (1 sinθ)*(1-sinθ) ) / ((1 sinθ)cosθ) ...通母分=(cos^2θ - (1-sin^2θ) ) / ((1 sinθ)cosθ)= (cos^2θ sin^2θ -1) / ((1 sinθ)cosθ)=0

2007-03-25 03:24:29 補充:
(cosθ)/(1 + sinθ)-(1-sinθ)/(cosθ)=[cos^2θ - (1 sinθ)*(1-sinθ) ] / [(1 + sinθ)*cosθ] ...通母分=[cos^2θ - (1-sin^2θ) ] / [(1 + sinθ)*cosθ]= [cos^2θ+sin^2θ -1] / [(1+sinθ)*cosθ]=0

2007-03-25 03:25:56 補充:
(cosθ)/(1 + sinθ) - (1-sinθ)/(cosθ)=[cos^2θ - (1+sinθ)*(1-sinθ) ] / [(1 + sinθ)*cosθ] ...通分母=[cos^2θ - (1-sin^2θ) ] / [(1 + sinθ)*cosθ]= [cos^2θ+sin^2θ -1] / [(1+sinθ)*cosθ]=0 改番好了...


收錄日期: 2021-04-23 16:44:31
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070324000051KK03795

檢視 Wayback Machine 備份