✔ 最佳答案
Let nCr=120, nC(r+1)=210, nC(r+2)=252
(n!)/(r!(n-r)!)=120
n!=120(r!(n-r)!) ..................................... (1)
(n!)/((r+1)!(n-r-1)!)=210 .......................... (2)
n!=210((r+1)!(n-r-1)!)
Put (1) into (2),
(120(r!(n-r)!))/((r+1)!(n-r-1)!)=210
(n-r)/(r+1)=210/120
n-r=(210/120)(r+1) .................................(*)
(n!)/((r+2)!(n-r-2)!)=252
n!=252((r+2)!(n-r-2)!) ............................. (3)
Put (3) into (2),
252((r+2)!(n-r-2)!)/((r+1)!(n-r-1)!)=210
(r+2)/(n-r-1)=210/252 .............................(**)
Put (*) into (**),
(r+2)/((210/120)(r+1)-1)=210/252
(-11/24)r=-11/8
r=3
by (*), n-3=(210/120)(3+1)
n=10
So, the value of n = 10