附加數學 - 複角

2007-03-20 2:43 am
1. 證明 (1+tan A)/(1-tan A) = tan 2A + sec 2A

2. 證明 csc A = cot (A/2) - cot A

回答 (1)

2007-03-20 3:24 am
✔ 最佳答案
1
(1+tan A)/(1-tan A)=(1+sinA/cosA)/(1-sinA/cosA)
=(cosA+sinA)/(cosA-sinA)
=Both upper and lower times (cosA+sinA)
=(1+sin2A)/cos2A
=tan 2A + sec 2A


2
cot (A/2) - cot A=(cosA/2)/(sinA/2)-(cosA)/(sinA)
=(sinAcosA/2-cosAsinA/2)/sinAsin(a/2)
AS sinAcosA/2-cosAsinA/2=Sin(A-A/2)=sinA/2
=sin(A/2)/sinAsin(A/2)
=1/sinA=cscA


收錄日期: 2021-04-26 17:58:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070319000051KK02997

檢視 Wayback Machine 備份