圓形的性質??

2007-03-19 11:15 pm
圓形的性質?? 請用英文回答

請分類回答 thx!!

回答 (3)

2007-03-19 11:19 pm
✔ 最佳答案

圖片參考:http://upload.wikimedia.org/wikipedia/commons/thumb/1/1d/CIRCLE_1.svg/180px-CIRCLE_1.svg.png



圖片參考:http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png
Circle illustration


In Euclidean geometry, a circle is the set of all points in a plane at a fixed distance, called the radius, from a given point, the centre.
Circles are simple closed curves which divide the plane into an interior and exterior. The circumference of a circle means the length of the circle, and the interior of the circle is called a disk. An arc is any continuous portion of a circle.
A circle is a special ellipse in which the two foci coincide (i.e., are the same point). Circles are conic sections attained when a right circular cone is intersected with a plane perpendicular to the axis of the cone.


Properties


圖片參考:http://upload.wikimedia.org/wikipedia/en/thumb/5/50/Secant-Secant_Theorem.svg/200px-Secant-Secant_Theorem.svg.png



圖片參考:http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png
Secant-secant theorem

The circle is the shape with the highest area for a given length of perimeter.
The circle is a highly symmetric shape, every line through the centre forms a line of reflection symmetry and it has rotational symmetry around the centre for every angle. Its symmetry group is the orthogonal group O(2,R). The group of rotations alone is the circle group T.
All circles are similar.

A circle's circumference and radius are proportional,
The area enclosed and the square of its radius are proportional.
The constants of proportionality are 2π and π, respectively.
The circle centred at the origin with radius 1 is called the unit circle.


Chord properties

Chords equidistant from the centre of a circle are equal (length).
Equal (length) chords are equidistant from the centre.
The perpendicular bisector of a chord passes through the centre of a circle; equivalent statements stemming from the uniqueness of the perpendicular bisector:

A perpendicular line from the centre of a circle bisects the chord.
The line segment (Circular segment) through the centre bisecting a chord is perpendicular to the chord.
If a central angle and an inscribed angle of a circle are subtended by the same chord and on the same side of the chord, then the central angle is twice the inscribed angle.
If two angles are inscribed on the same chord and on the same side of the chord, then they are equal.
If two angles are inscribed on the same chord and on opposite sides of the chord, then they are supplemental.

For a cyclic quadrilateral, the exterior angle is equal to the interior opposite angle.
An inscribed angle subtended by a diameter is a right angle.


Tangent properties

The line drawn perpendicular to the end point of a radius is a tangent to the circle.
A line drawn perpendicular to a tangent at the point of contact with a circle passes through the centre of the circle.
Tangents drawn from a point outside the circle are equal in length.
Two tangents can always be drawn from a point outside of the circle.


Theorems

See also: Power of a point

The chord theorem states that if two chords, CD and EF, intersect at G, then
圖片參考:http://upload.wikimedia.org/math/a/e/4/ae4c3cfbb3dd083b5e01fa34f2910ac1.png
. (Chord theorem)
If a tangent from an external point D meets the circle at C and a secant from the external point D meets the circle at G and E respectively, then
圖片參考:http://upload.wikimedia.org/math/a/b/7/ab7a3e38f23474e12ae033fc5b822eeb.png
. (tangent-secant theorem)
If two secants, DG and DE, also cut the circle at H and F respectively, then
圖片參考:http://upload.wikimedia.org/math/b/6/5/b65f2a41f0df59cecfee07634ff32d1b.png
. (Corollary of the tangent-secant theorem)
The angle between a tangent and chord is equal to the subtended angle on the opposite side of the chord. (Tangent chord property)
If the angle subtended by the chord at the centre is 90 degrees then l = √(2) × r, where l is the length of the chord and r is the radius of the circle.
If two secants are inscribed in the circle as shown at right, then the measurement of angle A is equal to one half the difference of the measurements of the enclosed arcs (DE and BC). This is the secant-secant theorem.
2007-03-23 2:57 am
good
2007-03-20 12:45 am
圓是一種幾何圖形。當一條線段繞著它的一個端點在平面內旋轉一周時,它的另一個端點的軌跡叫做圓。根據定義,通常用圓規來畫圓。

目錄 [隐藏]
1 數學
1.1 定義
1.1.1 墨經的記載
1.1.2 歐幾里德幾何
1.1.3 座標系
1.2 概念和特性
1.3 一般化
1.4 兩個圓的關係
1.5 相關的立體圖形
1.6 關於圓的定理
1.7 圓和其他平面形狀(特別是三角形)
1.8 圓的問題
2 人文
2.1 字源
2.2 哲學意義



[編輯] 數學

[編輯] 定義

[編輯] 墨經的記載
早在戰國時代的中國,墨子已經為圓下了一個定義:圓,一中同長也。意思就是:圓就是一個由中心到周界各點有相同長度的圖形。


[編輯] 歐幾里德幾何
在《幾何原本》中,圓是由一條線構成的平面圖形,使得平面上有一個點,這點到該圖形上任一點所連之直線段長度相等。 (幾何原本中對圓的定義):





[編輯] 座標系
解析幾何或直角坐標系:(x − xm)2 + (y − ym)2 = a2,其中a是半徑,(xm,ym)是圓心坐標。
參數方程:x = xm + acosθ,y = ym + asinθ
極方程:r = a

[編輯] 概念和特性
圓的中心點是圓的圓心(通常用O表示)。從圓心到圓上任何一點的距離被稱為半徑(通常用r,radius表示)。兩倍的半徑被稱為直徑(通常用d,diameter表示)。所有離圓心距離小於或等於半徑的點組成一個圓面:


圓的一周的長度被稱為圓周(L)。圓周與半徑的關係是:

L = 2πr
其中π是圓周率。

圓面的面積與半徑的關係是:

S = πr2
圓周的一部分被稱為圓弧。圓周上任何兩點相連的直線被稱為弦。最長的弦會通過圓心,其長度等於直徑。

假如一條直線與圓相交僅有一個交點,這條直線是這個圓的切線。這個交點是切點。過切點和圓心的直線和切線垂直。

假如一條直線與圓相交有兩個交點的話,這條直線是這個圓的割線。

由圓周上某兩點連往圓心,組成的角度叫做圓心角。圓周上任意三點組成的角度叫圓周角。圓周上有三點A、B、C,圓心為M,那麼:

角AMB=2×角ACB  圓心角=2×圓周角
只要圓周角其中兩點保持不變,圓周角不變,即是說角ACB=角ADB=角AEB……其中D、E都在圓周上。


[編輯] 一般化
在非歐幾何中(比如在球面幾何中)也有相應的圓的定義。

圓可以看作是一種特殊的橢圓,即焦點重合,離心率等於0時的情況。參見橢圓。

三維的圓是球體。

在測度空間中,圓的定義仍舊指距離一定點等距(在該測度下)的點的集合,不過隨著測度的不同,定義出來的圓的形狀也可能大不相同。例如在計程車測度底下定義出來的圓,實際上的形狀(在一般的觀點中)會是一個正方形。


[編輯] 兩個圓的關係
兩個不同大小的圓之間的可能關係如下: 1,2,3:其中一圓在另一圓內

兩圓不相交,互為同心圓
兩圓不相交
兩圓相交於一點,有1條共同切線
兩圓相交於一點,有3條共同切線
兩圓相交於兩點,有2條共同切線
兩圓不相交,有4條共同切線

[編輯] 相關的立體圖形
切面為圓的三維形狀有:

球體
扁球體
圓錐體
圓柱體
圓臺

[編輯] 關於圓的定理
笛卡爾定理
泰勒斯定理
九點圓
托勒密定理
帕斯卡定理

[編輯] 圓和其他平面形狀(特別是三角形)
外接圓
內接圓
旁切圓
當多邊形的每條邊固定,以有外接圓的圖形最大(參見等周定理)。


[編輯] 圓的問題
化圓為方問題昏指用尺規作圖的方法將畫出和一個已知圓面積相同的正方形。已經證明這是不可能的。
塔斯基分割圓問題要求用分割的方法來使已知圓變成正方形。

[編輯] 人文

在文藝復興時期,李奧納多·達·文西曾將一個人畫在圓內。
[編輯] 字源
「圓」字亦作「圜」、「員」,是形聲字。《正字通》認為「圓」本來應該是「丸」,因讀音相近而有了圓形的意思。


[編輯] 哲學意義
圓形被認為完美、完整的圖形。古希臘人因「圓形是最完美的圖形」這個概念,引伸了不少思想——畢達哥拉斯認為地球是圓的;柏拉圖認為正圓是行星的軌道。古代中國人亦認為「天圓地方」,天是圓的。

圓形(圓)和正方形(方)經常被視為對立的概念。

縱使如此,古中國人亦認為圓是封閉的概念,因為在一個圓形裡,是沒有門或任何出口的。


收錄日期: 2021-04-12 18:49:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070319000051KK01800

檢視 Wayback Machine 備份