[Pure maths] Limit of sequence

2007-03-17 5:20 am
Using sandwich principle, find the limit of the expression n! / n^n as n tends to infinity

回答 (1)

2007-03-17 8:05 am
✔ 最佳答案
First, it can be seen that

1 / n^n <= n! / n^n

Also,

n! / n^n
= ( n/n )[ (n-1)/n ][ (n-2)/n ]....{ [ n - ( n - 2 ) ] / n }( 1/n )
= ( 1 - 1/n )( 1 - 2/n ) ... ( 1 - n-2/n )( 1/n )
<= 1 / n

Therefore, 1 / n^n <= n! / n^n <= 1 / n

Lim n->infinty 1/n = 0
Lim n->infinty 1 / n^n = 0

By sandwich principle, Lim n->infinty n! / n^n = 0


Check if my solution is correct or not. I'm not so sure about that.


收錄日期: 2021-04-13 16:41:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070316000051KK04009

檢視 Wayback Machine 備份