1.Let A,Band C be the interior angles of △ABC. If sinA=2cosBsinC, porve that△ABC is isosceles.
A + B + C = 180
sinA = 2cosBsinC
sin[180 - (B + C)] = 2cosBsinC
sinBcosC + sinCcosB = 2cosBsinC
sinBcosC = cosBsinC
sinBcosC - cosBsinC = 0
sin(B - C) = 0
B - C = 0
B = C
△ABC is isosceles.