1) prove that tan2θ + sec2θ = (cosθ + sinθ) / (cosθ - sinθ)
LHS
= tan2θ + sec2θ
= (sin2θ + 1)/(cos2θ)
= 2sinθcosθ + 1 / (cos^2θ - sin^2θ)
= (sinθ + cosθ)^2 / (cosθ + sinθ)(cosθ - sinθ)
= (cosθ + sinθ) / (cosθ - sinθ)
= RHS
2a) Prove that tanθ + cotθ = 2/2sinθ
tanθ + cotθ = 2/2sinθ
LHS
= tanθ + cotθ
= tanθ + 1/tanθ
= (tan^2θ + 1) / tanθ
= sec^2θ / tanθ
= 1/sinθcosθ
Please check your answer
圖片參考:
http://hk.yimg.com/i/icon/16/7.gif
2b) if x = 2 + (√3) is a root of the equation x^2 - (tanθ + cotθ)x + 1 =0, fing the values of sin2θ and cos4θ
x^2 - (tanθ + cotθ)x + 1 =0
x^2 - x/sinθcosθ + 1 = 0
sinθcosθx^2 - x + sinθcosθ = 0
x = 2 + (√3) is a root of the equation sinθcosθx^2 - x + sinθcosθ = 0
Put x = 2 + (√3)
([2 + (√3)]^2 + 1)sinθcosθ - [2 + (√3)] = 0
(4 + 4√3 + 3 + 1)sinθcosθ = [2 + (√3)]
sinθcosθ = [2 + (√3)] / (8 + 4√3 )
sinθcosθ = 1/4
So,
sin2θ = 2sinθcosθ
= 1/2
cos4θ
= cos2(2θ)
= cos^2(2θ) - sin^2(2θ)
= [1 - sin^2(2θ)] - sin^2(2θ)
= 1 - 2sin^2(2θ)
= 1 - 2[(1/2)^2]
= 1 - 1/2
= 1/2