✔ 最佳答案
1) sinA + sin2A + sin3A = 0
2sin[(3A + A) / 2]cos[(3A - A) / 2] + sin2A = 0
2sin2AcosA + sin2A = 0
sin2A(2cosA + 1) = 0
sin2A = 0 or cosA = -0.5
2A = nπ + (-1)^n (0) or A = mπ + 2π/3 or mπ - 2π/3
A = 0.5nπ or mπ + 2π/3 or mπ - 2π/3, where m,n are integers
2) 4cos(A/2)cos(3A/2) = 1
4*0.5[cos(4A/2) + cos(2A/2)] = 1
cos2A + cosA = 0.5
2(cosA)^2 - 1 + cosA - 0.5 = 0
cosA = (-1 + √13)/4 or cosA = (-1 - √13)/4 (rej)
A = nπ + 0.861 or nπ - 0.861, where n are integers
3)(sinA)^3 - (cosA)^3 = sinA - cosA
(sinA - cosA)((sinA)^2 + sinAcosA + (cosA)^2) = sinA - cosA
sinA - cosA = 0 or ((sinA)^2 + sinAcosA + (cosA)^2) = 1
tanA = 1 or sinAcosA = 0
tanA = 1 or sinA = 0 or cosA = 0
A = mπ + π/4 or nπ or pπ + π/2 or pπ - π/2
2007-03-11 23:53:28 補充:
where m, n, p are integers for the answer of Q3