convergence(urgent!)

2007-03-11 10:40 am
a) (∞Σn=1)√ {(3n+1 )/(16n-3)}

b) (∞Σn=1)√ {(3n+1 )/(16n^2 -3)}

Determine the convergence of the above series.
Use comparsion test/ root test/ ratio test if possible

回答 (2)

2007-03-12 9:52 pm
✔ 最佳答案
我估貓朋有些地方做錯了。
a) (∞Σn=1)√ {(3n+1 )/(16n-3)}
Consider lim(n→∞) {(3n+1 )/(16n-3)}
lim(n→∞) {(3n+1 )/(16n-3)}
=lim(n→∞) {(3+1/n )/(16-3/n)}
=3/16
so lim(n→∞)√ {(3n+1 )/(16n-3)}=√(3/16)
By zero test, since lim(n→∞)an not equal to 0
(∞Σn=1)√ {(3n+1 )/(16n-3)} is divergent.
(b)
{(3n+1 )/(16n^2 -3)}
>= {(3n+1 )/(16n^2)}
>= {(3n)/(16n^2)}
=3/16n
Consider the sequence an= 3/16n and (∞Σn=1)an
Since (∞Σn=1)1/n is divergent
So (∞Σn=1)an is divergent
By comparsion test
(∞Σn=1)√ {(3n+1 )/(16n^2 -3)} is also divergent








2007-03-12 13:56:48 補充:
個(b)漏了根號﹐不過an全部都是正數﹐所以其實冇分別{(3n+1 )/(16n^2 -3)}>= {(3n+1 )/(16n^2)}>= {(3n)/(16n^2)}=3/16nSimilarly √ {(3n+1 )/(16n^2 -3)} >=√ (3/16n)

2007-03-12 13:57:09 補充:
Consider the sequence an= √ (3/16n) and (∞Σn=1)anSince (∞Σn=1)√ (1/n) is divergentSo (∞Σn=1)an is divergentBy comparsion test (∞Σn=1)√ {(3n+1 )/(16n^2 -3)} is also divergent

2007-03-12 13:58:52 補充:
(∞Σn=1)√ (1/n) is divergent 可以在任何分析書找到可以當條定理背了
2007-03-11 4:22 pm
a) (3n+1 )/(16n-3) ≦ (3n+n )/(16n-3) < (4n )/(16n) = 1/4n < 1/n


(∞Σn=1)√ {1/n} diverges by integral
Hence,
(∞Σn=1)√ {(3n+1 )/(16n-3)} is divergent by comparion test

b) (3n+1 )/(16n^2 -3) ≦ (3n+1 )/(16n-3)

Henc, (∞Σn=1)√ {(3n+1 )/(16n^2 -3)} is divergent by comparion test and part (a)



圖片參考:http://i175.photobucket.com/albums/w130/bjoechan2003/My%20Cat%2020070228/DSCN0687.jpg?t=1172589743


2007-03-11 10:28:10 補充:
a) (∞Σn=1)√ {1/n} diverges by integral test

2007-03-12 20:56:55 補充:
哎呀,邪門,邪門,已經第二題,哩張貓相真係唔吉利,竟然將個 inequality 掉能轉做仲懵剩剩。真係抵比人吋係豬犀。謝謝 myisland8132 指證。雖然無可能被選,不過我唔會就咁取消答案,而且我一定唔信邪,會繼續用哩張貓相答數學題。

2007-03-12 21:02:30 補充:
(3n 1 )/(16n-3) (3n)/(16n) = 3/16 1/16(∞Σn=1)√ {1/16} = (∞Σn=1){1/4} divergesHence,(∞Σn=1)√ {(3n 1 )/(16n-3)} is divergent by comparison test

2007-03-12 21:06:57 補充:
(3n+1 )/(16n^2 -3) &gt; (3n)/(16n^2) = 3/16n &gt; 1/16n(∞Σn=1)√ {1/16n} diverges by integral testHence, (∞Σn=1)√ {(3n+1 )/(16n^2 -3)} is divergent by comparison test


收錄日期: 2021-04-25 16:53:09
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070311000051KK00569

檢視 Wayback Machine 備份