✔ 最佳答案
我估貓朋有些地方做錯了。
a) (∞Σn=1)√ {(3n+1 )/(16n-3)}
Consider lim(n→∞) {(3n+1 )/(16n-3)}
lim(n→∞) {(3n+1 )/(16n-3)}
=lim(n→∞) {(3+1/n )/(16-3/n)}
=3/16
so lim(n→∞)√ {(3n+1 )/(16n-3)}=√(3/16)
By zero test, since lim(n→∞)an not equal to 0
(∞Σn=1)√ {(3n+1 )/(16n-3)} is divergent.
(b)
{(3n+1 )/(16n^2 -3)}
>= {(3n+1 )/(16n^2)}
>= {(3n)/(16n^2)}
=3/16n
Consider the sequence an= 3/16n and (∞Σn=1)an
Since (∞Σn=1)1/n is divergent
So (∞Σn=1)an is divergent
By comparsion test
(∞Σn=1)√ {(3n+1 )/(16n^2 -3)} is also divergent
2007-03-12 13:56:48 補充:
個(b)漏了根號﹐不過an全部都是正數﹐所以其實冇分別{(3n+1 )/(16n^2 -3)}>= {(3n+1 )/(16n^2)}>= {(3n)/(16n^2)}=3/16nSimilarly √ {(3n+1 )/(16n^2 -3)} >=√ (3/16n)
2007-03-12 13:57:09 補充:
Consider the sequence an= √ (3/16n) and (∞Σn=1)anSince (∞Σn=1)√ (1/n) is divergentSo (∞Σn=1)an is divergentBy comparsion test (∞Σn=1)√ {(3n+1 )/(16n^2 -3)} is also divergent
2007-03-12 13:58:52 補充:
(∞Σn=1)√ (1/n) is divergent 可以在任何分析書找到可以當條定理背了