π=0??(a question about e, i and π)

2007-03-10 8:20 am
Today I saw a beautiful equation e^(πi)=-1
I have already known the prove, however I find something strange, after squaring both sides, the equation becomes e^(2πi)=1 , if we take natural log of both sides, it becomes 2πi=0, that means π=0!!
Any mistake on the above steps? If yes, what is the mistake? If no, why π=0?
e=2.7182818...... , π=3.141592...... , i=sqrt(-1)

回答 (3)

2007-03-13 7:07 am
✔ 最佳答案
This contradictory result is due to the misunderstanding of the definition of natural logarithm for complex numbers.

Note that for natural logarithm of a complex number z, it is no longer a single-valued function, but a multi-valued function instead.

For any non-zero complex number z, the natural logarithm of z, denoted by Log(z), is the inverse of exponential function, i.e., e^[Log(z)] = z.
Note that by Euler formula, z = re^[i(2nπ + θ)], where r and θ are real numbers with r positive, and n integer.
Therefore e^[Log(z)] = re^[i(2nπ + θ)] = e^[ln(r) + i(2nπ + θ)], i.e., Log(z) = ln(r) + i(2nπ + θ), here ln denotes the natural logarithm for positive numbers.

This leads to the following definition for natural logarithm of complex numbers:

The natural logarithm of a non-zero complex number z, denoted by Log(z), is defined by
  Log(z) = ln(|z|) + i[2nπ + arg(z)],
where |z| and arg(z) denote the modulus and the principal value of argument of z respectively.


Here comes back to your original problem.
From e^(2πi) = 1, taking natural logarithm on both sides,
ln[e^(2πi)] = 2nπi = ln(1), which no longer shows contradiction.
2007-03-10 9:27 am
因為對數是定義在實數考慮的問題.
事實上歐拉公式是定義在複數去考慮問題:
e^(iθ)=cosθ+isinθ
當cosθ+isinθ=1時
θ=2nπ,(n為整數)
0是它的其中一個解,並不表示0=2π=4π=........

正如我們熟悉的一元二次方程
x^2-2x-3=0的解是3和-1
即3^2-2*3-3=(-1)^2-2*(-1)-3
那麼3=-1嗎??

希望能幫到你吧!

2007-03-11 19:31:09 補充:
因為對數的定義以a為底b的對數(其中a>0,且a≠1,b>0)在這樣的定義下它的對數必是實數而ln(-1)不合定義b>0.正如:x^4=16,它的根是±2或±2i但logx16=4,我們只能得出x=2道理一樣.
參考: 自己
2007-03-10 8:25 am
從那個proof 來說, 計算上可能無問題, 但係答案就極有問題, 而我的數學老師仍在苦思中!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!加油!!!!!!!!!下刪3000千字


收錄日期: 2021-04-13 14:31:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070310000051KK00090

檢視 Wayback Machine 備份