最佳解答者得10分﹕數學證明題

2007-03-06 3:18 am
請選擇任何一條等式證明﹕

A. 1+2+4+8+…+2n=2(2n)-1
B. 1+2+4+8+…+2n=2n+1-1

回答 (4)

2007-03-06 3:43 am
✔ 最佳答案
Here is the solution:

圖片參考:http://xs413.xs.to/xs413/07101/fjjflkdkfljefljk.png

2007-03-06 7:57 am
因為1+(1+2+4+8+...+2^n)
=2+2+4+8+...+2^n
=4+4+8+...+2^n
=....
=2^n+2^n
=2(2^n)
所以1+2+4+8+...+2^n=2(2^n)-1=2^(n+1)-1(A.B.同時得證)
2007-03-06 3:38 am
A.

it is a geometric sequence

1 + 2 + 4 + 8 + .... + 2^n

a = 1

R = 2

T(k) = aR^(k - 1)

2n = 2^(k - 1)

n + 1 = k

so,there is n + 1 terms

by sum of geometric sequence

LHS

= 1 + 2 + 4 + 8 + ..... + 2^n

= a(R^k - 1) / (R - 1)

= 2^(n + 1) - 1

= 2(2^n) - 1

= RHS


B.

LHS

= 1+2+4+8+…+2n

= 2(2^n) - 1(proved)

= 2^(n + 1) - 1

= RHS
參考: eason mensa
2007-03-06 3:22 am
B. 1+2+4+8+…+2n=2n+1-1


收錄日期: 2021-04-23 00:10:01
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070305000051KK03241

檢視 Wayback Machine 備份