limits

2007-03-05 6:41 am
evaluate the following limits

1. lim x->2 (x-2) / (√(x^2-4))
2. lim x->5 (x-5)/ (√(x+4)-3)

回答 (3)

2007-03-06 12:59 am
✔ 最佳答案

圖片參考:http://xs113.xs.to/xs113/07101/ghghghghg.png

2007-03-05 7:19 pm
lim x->2 (x-2) / (√(x^2-4))
=lim x->2 (x-2) / (√(x-2)(x+2)
=lim x->2 √(x-2)^2/(x+2)(x-2)
=lim x->2 √(x-2/x+2)
=√0/4
=√0
=0

lim x->5 (x-5)/ (√(x+4)-3)
=limx->5 (x-5)(√(x+4)+3)/(√(x+4)-3)(√(x+4)+3)
=limx->5 (x-5)(√(x+4)+3)/(x+4+9)
=limx->5 (x-5)(√(x+4)+3)/(x+13)
=(5-5)(√(5+4)+3)/(5+13)
=0/18
=0

2007-03-05 11:21:46 補充:
lim x->5 (x-5)/ (√(x+4)-3)=limx->5 (x-5)(√(x+4)+3)/(x+4-9)=limx->5(x-5)(√(x+4)+3)/(x-5)=limx->5 (√(x+4)+3)=(√(5+4)+3)=6
2007-03-05 7:00 am
1.
lim x->2 (x-2) / (√(x^2-4))

= lim x-> 2 (x - 2) / √(x + 2)(x - 2)

= lim x-> 2 √ {[(x - 2)]^2 / (x + 2)(x - 2)}

= limx->2 √[(x - 2) / (x + 2)]

= 0


2.
lim x->5 (x-5)/ (√(x+4)-3)

= lim x->5 (x - 5)(√(x + 4) + 3) / (x + 4 - 9)

= lim x->5 (x - 5)(√(x + 4) + 3) / (x - 5)

= lim x->5 (√(x + 4) + 3)

= 3 + 3

= 6


收錄日期: 2021-04-12 21:20:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070304000051KK05740

檢視 Wayback Machine 備份