(2) Trigonometric functions
Given that cosx-√3sinx=rcos(x+α),where r>0 and α is acute ,find the value of r² and tanα.
Hence solve the equation cosx-√3sinx=1 for -180° <180° .
Write down the least valur of (1/(cosx-√3sinx)²)
Plx show your steps clearly as soon as posible
ans:r²=4,tanα=√3
0°,-120°
1/4
回答 (2)
cosx-√3sinx=rcos(x+α)
=rcosxcosα-rsinxsinα
=(rcosα)cosx-(rsinα)sinx
comparing the coefficient,
rcosα=1 and rsinα=√3
r² =1²+√3²
r²=4
rsinα/rcosα=√3/1
tanα=√3
thus,r²=4 and tanα=√3
Hence solve the equation cosx-√3sinx=1 for -180° <180° .
cosx-√3sinx=1
2cos(x+60)=1
cos(x+60)=1/2
x+60=60 or 300
x=0 or 240
x=0 or -120
Write down the least valur of (1/(cosx-√3sinx)²)
1/(cosx-√3sinx)²
={1/[2cos(x+60)]²}
=1/4(1)
=1/4
收錄日期: 2021-04-12 23:46:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070301000051KK03373
檢視 Wayback Machine 備份