請問條數點計

2007-03-02 12:57 am
用三角恆等式計
1. 已知 cos θ = 4/5 , 求1 + tan θ 的值
答案係 5/4

2. 1/ tanθ + sin θ/ 1+ cosθ
答案係 cos^2 θ

回答 (2)

2007-03-02 1:52 am
✔ 最佳答案
1. sin θ = sqrt(1 - cos^2 θ) = sqrt(1 - (4/5)^2) = 3/5
cos θ = 4/5
=> 1 + tan θ
= 1 + sin θ / cos θ
= 1 + (3/5) / (4/5)
= 1 + 3/4
= 7/4

2. 1/tanθ + sin θ / (1 + cosθ)
= cosθ / sinθ + sin θ / (1 + cosθ)
= [cosθ (1+ cosθ) + sin^2 θ] / [sinθ (1 + cosθ)]
= (cosθ + cos^2 θ + sin^2 θ) / [sinθ (1 + cosθ)]
= (cosθ + 1) / [sinθ (1 + cosθ)]
= 1 / sinθ
= cosecθ
2007-03-02 1:05 am
1. 已知 cos θ = 4/5 , 求1 + tan θ 的值
cosθ = 4/5
sinθ = sqroot(1-(4/5)^2) = sqroot(9/25) = 3/5
tanθ = sin θ/ cosθ = 3/4
1 + tan θ = 1+3/4 = 7/4



收錄日期: 2021-04-12 23:30:02
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070301000051KK02160

檢視 Wayback Machine 備份