✔ 最佳答案
壹、證明0的0次方等於1
一、令0^0=x
對任意數k,x^k=(0^0)^k=0^(0*k)=0^0=x
其中k可以為負數,此時0不是解。所以1是唯一解,意即1是0^0唯一合理的定義。
二、在組合數學中,將n相異物分給m人的方法有m^n種,當n=0,不用分就可完成,本身就是一種方法。例如0!為0物作直線排列,C(0,0)為從0物中取0物的組合數都是1種方法,所以將0物分給0人也是1種方法。
貮、有些似是而非的理由會讓人認為0的0次方無法定義,在此予以說明:
一、指數律的矛盾:
0^0=0^(1-1)=0^1/0^1=0/0,而0/0無法定義。
1=1^0/0^0=(1/0)^0
不成立原因:
指數律的適用性有其限制,當指數律遇到0的負數次方或分母為0時,並不適用,既然不適用,就不能用來否定0^0=1。
如果指數律可以適用,會產生其它矛盾,不只在0^0。
0=0^1=0^(2-1)=0^2/0^1=0/0,變成0本身就無法定義。
0=0^1=0^[(-1)*(-1)]=[0^(-1)]^(-1)=(1/0)^(-1)
二、
lim x^y 不存在,
x->0,y->0
不成立原因:
極限值不存在亦無法推得函數值不能定義。
我們可以找出定義0^0=1的原因,而且又找不出矛盾來推翻它,所以可以推得0^0=1。
2007-02-27 21:53:17 補充:
關於*]]╔… ° *甜▉×°* 的答案:1、以二項式定理作為說明0^0=1的主要原因並不合理,甚至有點倒果為因。2、至於0^0=0/0的謬論已經被本人推翻了。3、討論0^0=1時,不必考慮極限,因為極限不存在。4、你討論了很多,但並明確說明0^0=1,只是給人籠統的觀念。