maths題,,幫幫忙plz

2007-02-24 4:38 am
求(√2+√3+√5)^2+(√2+√3-√5)^2+(√2-√3+√5)^2+(-√2+√3+√5)^2的值
(利用(a±b)^2=a^2±2ab+b^2)

最好有步驟,,thx

回答 (2)

2007-02-24 4:56 am
✔ 最佳答案
先把 (√2+√3+√5)^2+(√2+√3-√5)^2 => x
(√2-√3+√5)^2+(-√2+√3+√5)^2 => y
求 x+y?

在x方面,設(√2+√3 )=a √5 = b
x = (a+b)^2 + (a-b)^2 => a^2+2ab+b^2 + a^2-2ab+b^2
= 2a^2 + 2b^2
= 2(√2+√3 )^2 + 2(√5)^2
= 2 (2 + 2√6 + 3) + 10
= 20 + 2√6
在y方面,(√2-√3+√5)^2+(-√2+√3+√5)^2 改為
     (√2-√3+√5)^2 - (√2-√3-√5)^2
設(√2-√3 )=c √5 = d
y= (c+d)^2 - (c-d)^2
= 2c^2 + 2d^2 (Same as above)
= 2( (√2-√3)^2) + 10
= 20 - 2√6

合併x+y = 40

算計檢查正確
2007-02-24 5:06 am
(√2+√3+√5)^2+(√2+√3-√5)^2+(√2-√3+√5)^2+(-√2+√3+√5)^2
(√2+√3+√5)^2原式是(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac
=(2+3+5+√6+√10+√15)+(2+3-5+2√6)+(2-3+5+2√10)+(-2+3+5+2√15)
=10+0+4+6+√6+√10+√15+2√6+2√10+2√15
=20+3√6+3√10+√15


收錄日期: 2021-04-23 21:04:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070223000051KK05250

檢視 Wayback Machine 備份