Trigo compound angles

2007-02-22 4:01 pm
Show that tan(5π/12)=(√3+1)/(√3-1)
hence, if √3(cosθ+sinθ)+(cosθ-sinθ)=Rsin(θ+α),
for any value of θ, where R is positive and acute,
find R and α.

回答 (2)

2007-02-22 4:37 pm
✔ 最佳答案
tan (5π/12)
= tan (π/4 + π/6)
= (tan π/4 + tan π/6) / (1 - tan π/4 tan π/6)
= (1 + 1/√3) / (1 - 1 . 1/√3)
= (√3 + 1) / (√3 - 1)

2007-02-22 08:53:00 補充:
 R sin (θ+α)= R (sin θ cos α+cos θ sin α)= (R cos α) sin θ+(R sin α) cos θ. √3 (cos θ+sin θ)+(cos θ-sin θ)= (√3-1) sin θ+(√3+1) cos θ

2007-02-22 08:53:20 補充:
So,R cos α = (√3-1) and R sin α = (√3+1)tan α = (√3+1) / (√3-1)   = tan (5π/12)For acute α, α = 5π/12.tan (5π/12) = (√3+1) / (√3-1)cos (5π/12) = (√3-1) / 2R cos (5π/12) = √3-1R = 2=== finished ===
2007-02-22 4:58 pm
因為tan(5π/12)=(√3+1)/(√3-1)
所以√3+1=(√3-1)*tan(5π/12)&√3-1=(√3+1)/tan(5π/12)
√3(cosθ+sinθ)+(cosθ-sinθ)
=(√3+1)*cosθ+(√3-1)*sinθ
=(√3-1)*tan(5π/12)*cosθ+(√3-1)*sinθ
=(√3-1)*sin(5π/12)*cosθ/cos(5π/12)+(√3-1)*sinθ
=[(√3-1)/cos(5π/12)]*[sin(5π/12)*cosθ+sinθ*cos(5π/12)]
=[(√3-1)/cos(5π/12)]*[sin(5π/12+θ)]
=Rsin(θ+α)
又因為cos(5π/12)=(√2+√6)/4
即R=(√3-1)/cos(5π/12)=4(√3-1)/(√2+√6)=2√2(2-√3)
α=5π/12


收錄日期: 2021-04-12 23:48:44
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070222000051KK00747

檢視 Wayback Machine 備份