數學挑戰題 (2) --- 三角函數不等式 (20分)

2007-02-21 7:56 pm
解以下不等式 :
(1)
1 + sin x ≧2 ( cos x )^2 (-π < x < π)

(2)
{2 (cos x)^2 > cos x
{ sin x >0
(0 ≦x< 2π )

回答 (2)

2007-02-22 8:13 am
✔ 最佳答案
zerothpoint&#39;s answer to 1) must be wrong since (-π &lt; x &lt; π) given by question, therefore, 3π/2 or 2π have exceeded the limit.
(1)
1 + sin x ≧ 2 cos² x (-π &lt; x &lt; π)
=&gt; 1 + sin x ≧ 2 (1 - sin² x)
=&gt; 1 + sin x ≧ 2 - 2 sin² x
=&gt; 2 sin² x - 2 +1 + sin x ≧ 0
=&gt; 2 sin² x + sin x -1 ≧ 0
=&gt; (2 sin x -1) (sin x +1) ≧ 0
Since (2 sin x -1) (sin x +1) ≧ 0, therefore, either both (2 sin x -1) and (sin x +1) ≧ 0 or both (2 sin x -1) and (sin x +1) ≦ 0

Scenario 1: Both (2 sin x -1) and (sin x +1) ≧ 0
(2 sin x -1) ≧ 0
=&gt; sin x ≧ 1/2
=&gt; π/6 ≦ x ≦ 5π/6 .....(a)

(sin x +1) ≧ 0
=&gt; sin x ≧ -1
Since -π &lt; x &lt; π, i.e., it lies on all quadrants,and any points are valid between -π &lt; x &lt; π .....(b)

Combining (a) and (b), π/6 ≦ x ≦ 5π/6

Scenario 2: Both (2 sin x -1) and (sin x +1) ≦ 0
(2 sin x -1) ≦ 0
=&gt; sin x ≦ 1/2
=&gt; π &gt; x ≧ 5π/6 or -π &lt; x ≦ π/6 .....(c)

(sin x +1) ≦ 0
=&gt; sin x ≦ -1
Since -π &lt; x &lt; π, ie, only one point is valid, ie, sin x = -1 means x = -π/2
....(d)
Thus the only solution to Scenario is x = -π/2 after comparing (c) and (d).

Hence, combining Scenarios 1 and 2:
π/6 ≦ x ≦ 5π/6 or x = -π/2 (Answer.)

(2) 2 cos² x &gt; cos x and sin x &gt; 0 given 0 ≦x&lt; 2π
Since sin x &gt; 0, x is confined in quadrants I and II, ie, 0 &lt; x &lt; π

2 cos² x &gt; cos x
=&gt; 2 cos² x - cos x &gt; 0
=&gt; (2 cos x - 1) cos x &gt; 0


Since (2 cos x - 1) cos x &gt; 0, therefore, either both (2 cos x - 1) and cos x &gt; 0 or both (2 cos x - 1) &lt; 0 and cos x &lt; 0

Scenario 3: Both (2 cos x - 1) and cos x &gt; 0
(2 cos x - 1) &gt; 0
=&gt; cos x &gt; 1/2
=&gt; 0 &lt; x &lt; π/3 .....(e)

cos x &gt; 0
=&gt; 0 &lt; x &lt; π/2 .....(f)
combining (e) and (f), 0 &lt; x &lt; π/3

Scenario 4: Both (2 cos x - 1) and cos x &lt; 0
(2 cos x - 1) &lt; 0
=&gt; cos x &lt; 1/2
=&gt; π/3 &lt; x &lt; π ..... (g)

cos x &lt; 0
=&gt; π/2 &lt; x &lt; π ......(h)
combining (g) and (h), π/2 &lt; x &lt; π

By combining Scenarios 3 and 4, 0 &lt; x &lt; π/3 or π/2 &lt; x &lt; π (Answer)
2007-02-21 9:55 pm
Q1
1 + sin x ≧2 ( cos x )^2
1 + sin x ≧2 (1 - (sin x)^2)
2(sin x)^2 + sin x - 1 ≧ 0
(2sin x - 1)(sin x + 1) ≧ 0
-1 &lt;= sin x &lt;= 1/2
(0 &lt;= x &lt;= π/3) or (2π/3 &lt;=x &lt; 3π/2) or ( 3π/2 &lt; x &lt;= 2π)

Q2
The inequality sin x &gt; 0 implies 0 &lt; x &lt; π
So, we have
2 (cos x)^2 &gt; cos x
cos x (2cos x - 1) &gt; 0
cos x &lt; 0 or cos x &gt; 1/2
(0 &lt;= x &lt;= π/3) or (π/2 &lt; x &lt; π)


收錄日期: 2021-04-21 12:07:14
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070221000051KK01432

檢視 Wayback Machine 備份